Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA

Maximizing the neutron yield to obtain energy gain is the ultimate goal for inertial confinement fusion. Nonuniformities seeded by target and laser perturbations can disrupt neutron production via the Rayleigh–Taylor instability growth. To understand the effects of perturbations on the neutron yield of cryogenic DT implosions on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], two-dimensional DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] simulations have been performed to systematically investigate each perturbation source and their combined effects on the neutron-yield performance. Two sources of nonuniformity accounted for the neutron-yield reduction in DRACO simulations: target offset from the target chamber center and laser imprinting. The integrated simulations for individual shots reproduce the experimental yield-over-clean (YOC) ratio within a factor of 2 or better. The simulated neutron-averaged ion temperatures ⟨Ti⟩ is only about 10%–15% higher than meas...

[1]  P. B. Radha,et al.  Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. , 2008, Physical review letters.

[2]  T. H. Hinterman,et al.  Forming cryogenic targets for direct-drive experimentsa) , 2006 .

[3]  S. Skupsky,et al.  Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .

[4]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[5]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[6]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[7]  V. Goncharov,et al.  The effects of target mounts in direct-drive implosions on OMEGA , 2007 .

[8]  V N Goncharov,et al.  Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on OMEGA. , 2008, Physical review letters.

[9]  A. R. Piriz,et al.  Growth rate reduction of the Rayleigh–Taylor instability by ablative convection , 1995 .

[10]  D. Meyerhofer,et al.  Spherical Rayleigh–Taylor growth of three-dimensional broadband perturbations on OMEGA , 2009 .

[11]  P. B. Radha,et al.  Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion , 2007 .

[12]  Timothy W. Collins,et al.  Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega , 2010 .

[13]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[14]  R. Town,et al.  A model of laser imprinting , 1999 .

[15]  N Miyanaga,et al.  Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability. , 2007, Physical review letters.

[16]  Barukh Yaakobi,et al.  Rayleigh-Taylor Growth Stabilization in Direct-Drive Plastic Targets at Laser Intensities of ̃1×10 15 W/cm 2 , 2008 .

[17]  O. L. Landen,et al.  Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility , 2009 .

[18]  T. C. Sangster,et al.  Rayleigh-Taylor growth measurements in the acceleration phase of spherical implosions on OMEGA. , 2009, Physical review letters.

[19]  Ramon Joe Leeper,et al.  A neutron spectrometer for precise measurements of DT neutrons from 10 to 18 MeV at OMEGA and the National Ignition Facility , 2001 .

[20]  S. Skupsky,et al.  Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .

[21]  J Edwards,et al.  Generalized measurable ignition criterion for inertial confinement fusion. , 2010, Physical review letters.

[22]  P. B. Radha,et al.  Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA. , 2008, Physical review letters.

[23]  R. Epstein Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation , 1997 .

[24]  Joshua E. Rothenberg,et al.  Comparison of beam-smoothing methods for direct-drive inertial confinement fusion , 1997 .

[25]  K. A. Klare,et al.  Interpretation of neutron time-of-flight signals from current-mode detectors , 1996 .

[26]  S. Skupsky,et al.  Modeling hydrodynamic instabilities in inertial confinement fusion targets , 2000 .

[27]  B. Militzer,et al.  Strong coupling and degeneracy effects in inertial confinement fusion implosions. , 2010, Physical review letters.

[28]  P. B. Radha,et al.  Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system , 2009 .

[29]  Gilbert W. Collins,et al.  Shock-timing experiments using double-pulse laser irradiation , 2006 .

[30]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[31]  S. Skupsky,et al.  Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket , 2003 .

[32]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[33]  Paul A. Jaanimagi,et al.  Experimental investigation of smoothing by spectral dispersion , 2000 .

[34]  P. B. Radha,et al.  Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA , 2004 .

[35]  Riccardo Betti,et al.  Diagnosing fuel ρR and ρR asymmetries in cryogenic deuterium-tritium implosions using charged-particle spectrometry at OMEGA , 2009 .

[36]  J. A. Marozas,et al.  Polar-direct-drive simulations and experiments , 2006 .

[37]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[38]  T. C. Sangster,et al.  Systematic study of Rayleigh–Taylor growth in directly driven plastic targets in a laser-intensity range from ∼2×1014to∼1.5×1015W∕cm2 , 2008 .

[39]  J. D. Moody,et al.  Cryogenic DT and D2 targets for inertial confinement fusiona) , 2006 .

[40]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[41]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[42]  R. Betti,et al.  Theory of Laser-Induced Adiabat Shaping in Inertial Fusion Implosions , 2002 .

[43]  J. Kilkenny,et al.  NONLINEAR RAYLEIGH-TAYLOR EVOLUTION OF A THREE-DIMENSIONAL MULTIMODE PERTURBATION , 1998 .

[44]  Jeffrey A. Koch,et al.  Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules , 2000 .

[45]  F Durut,et al.  Revisiting nonlocal electron-energy transport in inertial-fusion conditions. , 2007, Physical review letters.

[46]  Y. Lin,et al.  Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.

[47]  E. Michael Campbell,et al.  The National Ignition Facility - applications for inertial fusion energy and high-energy-density science , 1999 .

[48]  R. S. Craxton,et al.  Three-Dimensional Characterization of Cryogenic Target Ice Layers Using Multiple Shadowgraph Views , 2006 .