Labelled Proof Nets for the Syntax and Semantics of Natural Languages

We propose to represent the syntax and semantics of natural languages with labelled proof nets in the implicative fragment of intuitionistic linear logic. Resource-sensitivity of linear logic is used to express all dependencies between the syntactic constituents of a sentence in the form of a proof net. Phonological and semantic labelling of the proof net from its inputs to the unique output are used to produce the well-formed phonological form and the semantic representation of a sentence from entries of a lexicon. In this way we obtain a linguistic model of great flexibility because labelling is not completely determined logically: it is used to introduce linguistic constraints which go beyond the underlying logic. 1

[1]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[2]  Dirk Roorda,et al.  Resource Logics : Proof-Theoretical Investigations , 1991 .

[3]  Glyn MorrillCentre,et al.  Grammar and Logical Types , 1990 .

[4]  Philippe de Groote An Algebraic Correctness Criterion for Intuitionistic Proof-Nets , 1997, LFCS.

[5]  M. Moortgat Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus , 1988 .

[6]  François Lamarche Games semantics for full propositional linear logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[7]  Anne Abeillé,et al.  Les nouvelles syntaxes : grammaire d'unification et analyse du français , 1993 .

[8]  Glyn Morrill,et al.  Proof Figures and Structural Operators for Categorial Grammar , 1991, EACL.

[9]  François Lamarche From Proof Nets to Games , 1996, Electron. Notes Theor. Comput. Sci..

[10]  Glyn Morrill,et al.  Clausal Proofs and Discontinuity , 1995, Log. J. IGPL.

[11]  Glyn Morrill,et al.  Higher-order Linear Logic Programming of Categorial Deduction , 1995, EACL.

[12]  Glyn Morrill,et al.  Heads and Phrases. Type Calculus for Dependency and Constituent Structure , 1991 .

[13]  Richard T. Oehrle,et al.  Term-labeled categorial type systems , 1994 .

[14]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[15]  Mati Pentus,et al.  Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[16]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[17]  Glyn Morrill,et al.  Type Logical Grammar: Categorial Logic of Signs , 1994 .