High-order Galerkin methods for scalable global atmospheric models

Three different high-order finite element methods are used to solve the advection problem-two implementations of a discontinuous Galerkin and a spectral element (high-order continuous Galerkin) method. The three methods are tested using a 2D Gaussian hill as a test function, and the relative L"2 errors are compared. Using an explicit Runge-Kutta time stepping scheme, all three methods can be parallelized using a straightforward domain decomposition and are shown to be easily and efficiently scaled across multiple-processor distributed memory machines. The effect of a monotonic limiter on a DG scheme is demonstrated for a non-smooth solution. Additionally, the necessary geometry for implementing these methods on the surface of a sphere is discussed.

[1]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[2]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[3]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[4]  W. Washington,et al.  An Introduction to Three-Dimensional Climate Modeling , 1986 .

[5]  M. Iskandarani,et al.  Comparison of advection schemes for high-order h–p finite element and finite volume methods , 2005 .

[6]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[7]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[8]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[9]  R.D. Loft,et al.  Terascale Spectral Element Dynamical Core for Atmospheric General Circulation Models , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[10]  H. Tufo,et al.  A spectral finite volume transport scheme on the cubed-sphere , 2007 .

[11]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[12]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[13]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[14]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[15]  John M. Dennis,et al.  Towards an efficient and scalable discontinuous Galerkin atmospheric model , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[16]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[17]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[18]  Anthony Harkin A Legendre spectral element method for the rotational Navier-Stokes equations , 1995 .

[19]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[20]  David E. Keyes,et al.  Parallel implementation of the discontinuous Galerkin method , 1999 .

[21]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .