Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band

The Earth's magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarization-sensitive ground-based cosmic microwave background (CMB) experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is uniquely capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations near 40 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of $(-5.5 \pm 0.6)^\circ$, which is consistent with the expectation of $-5.9^\circ$ for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ${\sim}20\%$.

[1]  P. Lubin,et al.  Circular polarization of the CMB: Foregrounds and detection prospects , 2016, 1606.04112.

[2]  P. Eriksson,et al.  A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS) , 2014 .

[3]  S. Tizchang,et al.  Cosmic microwave background polarization in non-commutative space-time , 2016 .

[4]  Edward J. Wollack,et al.  A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment’s Sample Variance Limited E-mode Measurement , 2018, The Astrophysical Journal.

[5]  R. Mohammadi Evidence for cosmic neutrino background from CMB circular polarization , 2013, 1312.2199.

[6]  Edward J. Wollack,et al.  The cosmology large angular scale surveyor (CLASS): 40 GHz optical design , 2012, Other Conferences.

[7]  W. White,et al.  A CMB polarization primer , 1997 .

[8]  Edward J. Wollack,et al.  Properties of a variable-delay polarization modulator. , 2011, Applied optics.

[9]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[10]  Collisional broadening of oxygen fine structure lines: The impact of temperature , 2016 .

[11]  Edward J. Wollack,et al.  MEASURING THE LARGEST ANGULAR SCALE CMB B-MODE POLARIZATION WITH GALACTIC FOREGROUNDS ON A CUT SKY , 2015, 1508.00017.

[12]  Brian Keating,et al.  LARGE ANGULAR SCALE POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND RADIATION AND THE FEASIBILITY OF ITS DETECTION , 1997 .

[13]  T. R. Sreerekha,et al.  Observing cosmic microwave background polarization through ice , 2007 .

[14]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[15]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[16]  C. Prigent,et al.  Evidence of the zeeman splitting in the 21 → 01 rotational transition of the atmospheric 16O18O molecule from ground-based measurements , 1995 .

[17]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[18]  Hans J. Liebe,et al.  Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz , 1981 .

[19]  Michael J. Schwartz,et al.  EOS MLS forward model polarized radiative transfer for Zeeman-split oxygen lines , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[21]  V-mode polarization of the cosmic microwave background , 2009, 0909.3629.

[22]  Giulio Fabbian,et al.  A template of atmospheric O2 circularly polarized emission for cosmic microwave background experiments , 2011 .

[23]  M. L. Meeks,et al.  The microwave spectrum of oxygen in the Earth's atmosphere , 1963 .

[24]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[25]  E. Lifshitz,et al.  ASYMPTOTIC FORMULAE OF QUANTUM ELECTRODYNAMICS , 1982 .

[26]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[27]  J. V. Vleck,et al.  On the Shape of Collision-Broadened Lines , 1945 .

[28]  R. B. Partridge,et al.  Linear polarized fluctuations in the cosmic microwave background , 1988, Nature.

[29]  Ye Hong,et al.  Design and Evaluation of the First Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[31]  Lyman A. Page,et al.  Results from the Atacama B-mode Search (ABS) experiment , 2018, Journal of Cosmology and Astroparticle Physics.

[32]  G. Smoot,et al.  Linear and circular polarization of the cosmic background radiation , 1983 .

[33]  Chikako Takahashi,et al.  Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range , 2005 .

[34]  William B. Lenoir,et al.  Microwave spectrum of molecular oxygen in the mesosphere. , 1968 .

[35]  D. S. Makarov,et al.  60-GHz oxygen band: Precise experimental profiles and extended absorption modeling in a wide temperature range , 2011 .

[36]  Anthony Challinor,et al.  Systematic errors in cosmic microwave background polarization measurements , 2007 .

[37]  R. Penndorf The vertical distribution of atomic oxygen in the upper atmosphere , 1949 .

[38]  Adrian T. Lee,et al.  Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR , 2018, The Astrophysical Journal.

[39]  M. Tretyakov,et al.  Spectroscopy underlying microwave remote sensing of atmospheric water vapor , 2016 .

[40]  Floyd Herbert,et al.  Spectrum line profiles: A generalized Voigt function including collisional narrowing , 1974 .

[41]  Leo Singer,et al.  healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python , 2019, J. Open Source Softw..

[42]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[43]  Asantha Cooray,et al.  Is the cosmic microwave background circularly polarized , 2003 .

[44]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[45]  R. Sawyer Photon-photon interactions as a source of cosmic microwave background circular polarization , 2015 .

[46]  M. Haghighat,et al.  Generation of circular polarization of the CMB , 2009, 0912.2993.

[47]  L. Machta,et al.  Atmospheric Oxygen in 1967 to 1970 , 1970, Science.

[48]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[49]  D. H. Staelin,et al.  Polarized thermal microwave emission from oxygen in the mesosphere , 1988 .

[50]  James Randa,et al.  Recommended Terminology for Microwave Radiometry , 2017 .

[51]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[52]  Pressure broadening of oxygen fine structure lines by water , 2015 .

[53]  P L Varghese,et al.  Collisional narrowing effects on spectral line shapes measured at high resolution. , 1984, Applied optics.

[54]  Aamir Ali,et al.  Variable-delay polarization modulators for the CLASS telescopes , 2018, Astronomical Telescopes + Instrumentation.

[55]  William B. Lenoir,et al.  Propagation of Partially Polarized Waves in a Slightly Anisotropic Medium , 1967 .

[56]  F. Cavaliere,et al.  An improved upper limit to the CMB circular polarization at large angular scales , 2013, 1307.6090.

[57]  Observing CMB polarisation through ice , 2006, astro-ph/0611678.

[58]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[59]  P. A. R. Ade,et al.  A New Limit on CMB Circular Polarization from SPIDER , 2017, 1704.00215.

[60]  P. Eriksson,et al.  Updated Zeeman effect splitting coefficients for molecular oxygen in planetary applications , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[61]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[62]  M. Kamionkowski,et al.  Circular polarization of the cosmic microwave background from vector and tensor perturbations , 2018, Physical Review D.

[63]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .

[64]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[65]  Johannes Hubmayr,et al.  On-sky Performance of the CLASS Q-band Telescope , 2018, The Astrophysical Journal.

[66]  Shaul Hanany,et al.  Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments , 2003 .

[67]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[68]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[69]  R. J. Hill,et al.  Water vapor‐absorption line shape comparison using the 22‐GHz line: The Van Vleck‐Weisskopf shape affirmed , 1986 .