Channel Coding for Optical Channels

In this chapter, we describe different forward error correction (FEC) schemes currently in use or suitable for use in optical communication systems. We start with the description of standard block codes. The state-of-the-art in optical communication systems standardized by the ITU employ concatenated Bose–Chaudhuri–Hocquenghem (BCH)/RS codes [1, 2]. The RS(255,239), in particular, has been used in a broad range of long-haul communication systems [1, 2], and it is commonly considered as the first-generation of FEC [3, 4]. The elementary FEC schemes (BCH, RS, or convolutional codes) may be combined to design more powerful FEC schemes, e.g., RS(255,239) + RS(255,233). Several classes of concatenation codes are listed in ITU-T G975.1. Different concatenation schemes, such as the concatenation of two RS codes or the concatenation of RS and convolutional codes, are commonly considered as second generation of FEC [3, 4].

[1]  Takashi Mizuochi,et al.  Next generation FEC for optical transmission systems , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[2]  I. Reed,et al.  Polynomial Codes Over Certain Finite Fields , 1960 .

[3]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[4]  Željko Ilić,et al.  Introduction to information theory and coding , 2007 .

[5]  T. Mizuochi,et al.  Recent progress in forward error correction and its interplay with transmission impairments , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  I.B. Djordjevic,et al.  Low-density parity check codes for long-haul optical communication systems , 2002, IEEE Photonics Technology Letters.

[7]  I.B. Djordjevic,et al.  Block-circulant low-density parity-check codes for optical communication systems , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  R. Morelos-Zaragoza The art of error correcting coding , 2002 .

[9]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[10]  William E. Ryan,et al.  Concatenated Convolutional Codes and Iterative Decoding , 2003 .

[11]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[12]  G. Bosco,et al.  Long-distance effectiveness of MLSE IMDD receivers , 2006, IEEE Photonics Technology Letters.

[13]  O. Ait Sab,et al.  Block turbo code performances for long-haul DWDM optical transmission systems , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[14]  Raymond K. Kostuk,et al.  Low-density parity check codes and iterative decoding for long-haul optical communication systems , 2003 .

[15]  John B. Anderson,et al.  Source and Channel Coding , 1991 .

[16]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[17]  I. Anderson Combinatorial Designs and Tournaments , 1998 .

[18]  Simon Haykin,et al.  Communication Systems , 1978 .

[19]  S. Sankaranarayanan,et al.  Projective-plane iteratively decodable block codes for WDM high-speed long-haul transmission systems , 2004, Journal of Lightwave Technology.

[20]  B. Vasic,et al.  Calculation of Achievable Information Rates of Long-Haul Optical Transmission Systems using Instanton Approach , 2006, 2006 IEEE International Symposium on Information Theory.

[21]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.

[22]  Franklin M. Ingels Information and coding theory , 1971 .

[23]  B. Vasic,et al.  Pulse Energy Probability Density Functions for Long-Haul Optical Fiber Transmission Systems by Using Instantons and Edgeworth Expansion , 2007, IEEE Photonics Technology Letters.

[24]  John B. Anderson,et al.  Source and Channel Coding: An Algorithmic Approach , 1991 .

[25]  I. Djordjevic,et al.  Generalized low-density parity-check codes for optical communication systems , 2005, Journal of Lightwave Technology.

[26]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[27]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[28]  John G. Proakis,et al.  Digital Communications , 1983 .

[29]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[30]  A.S. Omar FEC techniques in submarine transmission systems , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[31]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[34]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[35]  I.B. Djordjevic,et al.  Next Generation FEC for High-Capacity Communication in Optical Transport Networks , 2009, Journal of Lightwave Technology.

[36]  Ivan B. Djordjevic,et al.  Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization , 2008, IEEE Journal on Selected Areas in Communications.

[37]  Branka Vucetic,et al.  Turbo Codes: Principles and Applications , 2000 .

[38]  K. Motoshima,et al.  Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  M. V. Valkenburg Network Analysis , 1964 .

[40]  D. Raghavarao Constructions and Combinatorial Problems in Design of Experiments , 1971 .

[41]  D. Divsalar,et al.  Turbo codes for deep-space communications , 1995 .

[42]  I.B. Djordjevic,et al.  Low-density parity-check codes for 40-gb/s optical transmission systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Ramesh Pyndiah,et al.  Near optimum decoding of product codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[44]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..