Energy bounds for codes and designs in Hamming spaces

We obtain universal bounds on the energy of codes and designs in Hamming spaces. Our bounds hold for a large class of potential functions, allow a unified treatment, and can be viewed as a generalization of the Levenshtein bounds for maximal codes.

[1]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[2]  Alexander Vardy,et al.  A table of upper bounds for binary codes , 2001, IEEE Trans. Inf. Theory.

[3]  Danyo Danev,et al.  On Maximal Codes in Polynominal Metric Spaces , 1997, AAECC.

[4]  E. Saff,et al.  Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.

[5]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[6]  E. Saff,et al.  Universal Lower Bounds for Potential Energy of Spherical Codes , 2015, Constructive Approximation.

[7]  Edward B. Saff,et al.  Constrained energy problems with applications to orthogonal polynomials of a discrete variable , 1997 .

[8]  Vladimir I. Levenshtein,et al.  Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.

[9]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[10]  BMX: a tool for computing bacterial phyletic composition from orthologous maps , 2015, BMC Research Notes.

[11]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[12]  Philippe Delsarte,et al.  Association Schemes and Coding Theory , 1998, IEEE Trans. Inf. Theory.

[13]  E. Saff,et al.  Universal upper and lower bounds on energy of spherical designs , 2015, 1509.07837.

[14]  P. Boyvalenkov,et al.  ON LINEAR PROGRAMMING BOUNDS FOR CODES IN POLYNOMIAL METRIC SPACES , 1998 .

[15]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[16]  Edward B. Saff,et al.  A Problem in Potential Theory and Zero Asymptotics of Krawtchouk Polynomials , 2000 .

[17]  Simon Litsyn,et al.  Estimates of the distance distribution of codes and designs , 2001, IEEE Trans. Inf. Theory.

[18]  Modelling supercoiled DNA knots and catenanes by means of a new regular isotopy invariant , 1991 .

[19]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[20]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[21]  Yufei Zhao,et al.  Energy-Minimizing Error-Correcting Codes , 2012, IEEE Transactions on Information Theory.

[22]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[23]  N. J. A. Sloane,et al.  Bounds for binary codes of length less than 25 , 1978, IEEE Trans. Inf. Theory.

[24]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[25]  Danyo Danev,et al.  Necessary Conditions for Existence of Some Designs in Polynomial Metric Spaces , 1999, Eur. J. Comb..

[26]  Andrei V. Kelarev,et al.  The Theory of Information and Coding , 2005 .

[28]  Alexander Schrijver,et al.  New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming , 2006, J. Comb. Theory, Ser. A.

[29]  Vladimir I. Levenshtein,et al.  On Upper Bounds for Code Distance and Covering Radius of Designs in Polynomial Metric Spaces , 1995, J. Comb. Theory, Ser. A.

[30]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[31]  Alexander Barg,et al.  Binomial Moments of the Distance Distribution: Bounds and Applications , 1999, IEEE Trans. Inf. Theory.

[32]  V. Levenshtein Designs as maximum codes in polynomial metric spaces , 1992 .