Accurate opto-electrical modeling of multi-crystalline silicon wafer-based solar cells

Modeling of multi-crystalline silicon solar cells has been recently widely used for fast and cost-effective performance improvements. The optimization of device performance requires deep understanding of the opto-electrical losses in a fabricated solar cell. To carry out trustworthy simulations for performance analysis and optimization, the simulation program has to be calibrated to the performance of the fabricated device. In this article an accurate opto-electrical modeling of multi-crystalline silicon solar cells is presented. Specific issues that arose during the calibration process were addressed, such as the optical model describing light scattering due to wafer texturing, the electrical modeling of heavily doped emitter and the opto-electrical modeling of the back surface field. Calibrated model parameters, obtained from theory or measurements, led to an excellent simultaneous matching between simulated and measured reflectance spectrum, internal and external quantum efficiencies and dark and illuminated current–voltage characteristics of the multi-crystalline silicon solar cells. In addition, opto-electrical losses in the investigated solar cells were determined and quantified.

[1]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990 .

[2]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[3]  M. Zeman,et al.  Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range , 2011 .

[4]  M. Zeman,et al.  Device Modeling of a-Si:H Alloy Solar Cells: Calibration Procedure for Determination of Model Input Parameters , 1998 .

[5]  Thomas Käsebier,et al.  Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition , 2012 .

[6]  J. Krč,et al.  Design and Optimisation of Thin-Film Silicon PV Modules with Surface-Textured Front Glass by Using a Combined Geometric Optics / Wave Optics Model , 2012 .

[7]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[8]  M. Green,et al.  Two‐dimensional numerical optimization study of the rear contact geometry of high‐efficiency silicon solar cells , 1994 .

[9]  M. Hermle,et al.  Effect of incomplete ionization for the description of highly aluminum-doped silicon , 2011 .

[10]  M. L. Terry,et al.  Isotextured Silicon Solar Cell Analysis and Modeling 2: Recombination and Device Modeling , 2012, IEEE Journal of Photovoltaics.

[11]  Gernot Heiser,et al.  Two-Dimensional Numerical Simulations of High Efficiency Silicon Solar Cells , 1995 .

[12]  S. Steingrube,et al.  Interpretation of recombination at c-Si/SiNx interfaces by surface damage , 2010 .

[13]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates , 2002 .

[14]  P. Fath,et al.  Two- and three-dimensional optical carrier generation determination in crystalline silicon solar cells , 1998 .

[15]  J. Dziewior,et al.  Auger coefficients for highly doped and highly excited silicon , 1977 .

[16]  Jürgen Schumacher,et al.  Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters , 2002 .

[17]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[18]  P. Altermatt,et al.  Improvements in numerical modelling of highly injected crystalline silicon solar cells , 2001 .

[19]  R. Kopecek,et al.  Factors Limiting the Formation of Uniform and Thick Aluminum–Back-Surface Field and Its Potential , 2006 .

[20]  M. Green,et al.  Limiting loss mechanisms in 23% efficient silicon solar cells , 1995 .

[21]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[22]  Mark Kerr,et al.  Recombination at the interface between silicon and stoichiometric plasma silicon nitride , 2002 .

[23]  Janez Krč,et al.  Optical and electrical modeling of thin-film silicon solar cells , 2008 .

[24]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[25]  W. Fuhs,et al.  AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[26]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[27]  P. Altermatt,et al.  Formation of aluminum–oxygen complexes in highly aluminum-doped silicon , 2010 .

[28]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[29]  J. Springer,et al.  Improved three-dimensional optical model for thin-film silicon solar cells , 2004 .

[30]  Marko Topič,et al.  Potential of light trapping in microcrystalline silicon solar cells with textured substrates , 2003 .

[31]  M. Zeman,et al.  A scattering model for surface-textured thin films , 2009 .

[32]  Paul A. Basore,et al.  Extended spectral analysis of internal quantum efficiency , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[33]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[34]  M. Rahman Status of Selective Emitters for p-Type c-Si Solar Cells , 2012 .

[35]  R. Hezel,et al.  Low‐Temperature Surface Passivation of Silicon for Solar Cells , 1989 .

[36]  Stefan W. Glunz,et al.  Theory and experiments on the back side reflectance of silicon wafer solar cells , 2008 .

[37]  Richard Corkish,et al.  Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon , 2003 .

[38]  S. Glunz,et al.  Improved quantitative description of Auger recombination in crystalline silicon , 2012 .

[39]  Rudi Santbergen,et al.  Optical absorption factor of solar cells for PVT systems , 2008 .

[40]  J. G. Fossum,et al.  Computer-aided numerical analysis of silicon solar cells , 1976 .

[41]  Jürgen Schumacher,et al.  Quantum efficiency analysis of high efficiency solar cells with textured surfaces , 1995 .

[42]  B. Sopori,et al.  Studies on Backside Al-Contact Formation in Si Solar Cells: Fundamental Mechanisms , 2009 .

[43]  K. McIntosh,et al.  Isotextured Silicon Solar Cell Analysis and Modeling 1: Optics , 2012, IEEE Journal of Photovoltaics.

[44]  M. Zeman,et al.  Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells , 2009 .

[45]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[46]  J.E. Cotter RaySim 6.0: a free geometrical ray tracing program for silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[47]  Thorsten Dullweber,et al.  19.4% -Efficient Large Area Rear-Passivated Screen-Printed Silicon Solar Cells , 2011 .

[48]  Benedikt Bläsi,et al.  Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms , 2012 .

[49]  F. Leblanc,et al.  Numerical modeling of the optical properties of hydrogenated amorphous‐silicon‐based p‐i‐n solar cells deposited on rough transparent conducting oxide substrates , 1994 .

[50]  P. Altermatt,et al.  Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon , 1997 .

[51]  A. W. Smith,et al.  PC-1D version 2: enhanced numerical solar cell modelling , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[52]  Manuel Cardona,et al.  Effect of heavy doping on the optical properties and the band structure of silicon , 1984 .

[53]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[54]  J. Fossum Physical operation of back-surface-field silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[55]  Pietro P. Altermatt,et al.  Models for numerical device simulations of crystalline silicon solar cells—a review , 2011 .