Studies on the Ignition and Burning of Levitated Aluminum Particles

Abstract An experimental set-up is developed to investigate the burning of levitated aluminum particles ignited by a C02laser in air under high pressure conditions. Residence times of aluminum particles burning in the electrodynamic levitator are long enough to observe the total burning process, under normal and high pressures. Experiments allow to measure the ignition delay and the burning times of aluminum particles. These measurements and the accompanying high speed images give useful information on the burning processes of aluminum particles under various regimes. A numerical model is also developed to predict the burning rates of aluminum particles and the sizes of the alumina residues.

[1]  L. Dumas,et al.  Modeling of alumina slag formation in solid rocket motors , 1995 .

[2]  K. P. Brooks,et al.  Dynamics of aluminum combustion , 1995 .

[3]  E. Dreizin,et al.  Surface phenomena in aluminum combustion , 1995 .

[4]  Mark Salita,et al.  Deficiencies and requirements in modeling of slag generation in solid rocket motors , 1995 .

[5]  I. Glassman Comment on “The combustion phase of burning metals” by T. A. Steinberg, D. B. Wilson, and F. Benz , 1993 .

[6]  William A. Sirignano,et al.  Convective burning of a droplet containing a single metal particle , 1993 .

[7]  William A. Sirignano,et al.  Flame propagation in metal slurry sprays , 1993 .

[8]  William A. Sirignano,et al.  Numerical Modeling of a Slurry Droplet Containing a Spherical Particle , 1993 .

[9]  H. Krier,et al.  Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures , 1993 .

[10]  T. Steinberg,et al.  The Combustion Phase of Burning Metals , 1992 .

[11]  William A. Sirignano,et al.  Transient Heating and Burning of Droplet Containing a Single Metal Particle , 1992 .

[12]  S. Yuasa,et al.  Ignition and combustion of magnesium in carbon dioxide streams , 1992 .

[13]  Adel F. Sarofim,et al.  The electrodynamic chamber: a tool for studying high temperature kinetics involving liquid and solid particles , 1991 .

[14]  S. Turns,et al.  Combustion of Aluminum-Based Slurry Agglomerates , 1987 .

[15]  Stephen Turns,et al.  Ignition of Aluminum Slurry Droplets , 1987 .

[16]  E. Davis Single Aerocolloidal Particle Instrumentation and Measurement , 1987 .

[17]  J. Longwell,et al.  Electrodynamic thermogravimetric analyzer , 1986 .

[18]  Yu. V. Frolov,et al.  Ignition and combustion mechanism in aluminum particles , 1976 .

[19]  Chung King Law,et al.  A Simplified Theoretical Model for the Vapor-Phase Combustion of Metal Particles† , 1973 .

[20]  F. Williams,et al.  Experimental study of the combustion of single aluminum particles in O2/Ar , 1971 .

[21]  J. Prentice Combustion of pulse-heated single particles of aluminum and beryllium. , 1970 .

[22]  Yu. V. Frolov,et al.  Combustion and ignition of particles of finely dispersed aluminum , 1968 .

[23]  I. Glassman,et al.  Vapor-Phase Diffusion Flames in the Combustion of Magnesium and Aluminum: I. Analytical Developments , 1964 .

[24]  A. Gordon,et al.  Study of Quenched Aluminum Particle Combustion , 1963 .

[25]  I. Glassman,et al.  Vapor-Phase Diffusion Flames in the Combustion of Magnesium and Aluminum: III. Experimental Observations in Carbon Dioxide Atmospheres , 1963 .

[26]  A. Maček,et al.  Project SQUID: Techniques for the Study of Combustion of Beryllium and Aluminum Particles , 1963 .