The general solutions to the reflection equation of the Izergin-Korepin model

We obtain the general solutions to the reflection equation of the Izergin-Korepin model. The general solutions have two free parameters and will reduce to the non-trivial diagonal solutions when both free parameters vanish. It will also reduce to the solutions with upper-lower triangular structures when one of the parameters vanishes. Moreover, the Hamiltonian with boundary terms for the system is obtained.

[1]  S. Odake,et al.  Reflection K-matrices of the 19-vertex model and XXZ spin-1 chain with general boundary terms , 1996, hep-th/9601049.

[2]  V. Fridkin,et al.  Solutions of the reflection equation for face and vertex models associated with An(1), Bn(1), Cn(1), Dn(1) and An(2) , 1996, hep-th/9601051.

[3]  H. Fan,et al.  Solution of Reflection Equation , 1995 .

[4]  M. Jimbo,et al.  XXZ chain with a boundary , 1994, hep-th/9411112.

[5]  H. Konno,et al.  Integrable XYZ spin chain with boundaries , 1994, hep-th/9409138.

[6]  M. Ge,et al.  General Yang-baxterization of reflection equations and general K-matrices of An-1 vertex models , 1994 .

[7]  H. Vega,et al.  EXACT BETHE ANSATZ SOLUTION FOR An−1 CHAINS WITH NON-SUq(n) INVARIANT OPEN BOUNDARY CONDITIONS , 1994, hep-th/9404141.

[8]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[9]  H. Vega,et al.  Exact solution of the SUq (n)-invariant quantum spin chains , 1993, hep-th/9309022.

[10]  H. Vega,et al.  Boundary K-matrices for the XYZ, XXZ and XXX spin chains , 1993, hep-th/9306089.

[11]  R. Yue,et al.  General solution of the reflection equations for the eight-vertex model , 1993 .

[12]  Paul C. Bressloff,et al.  Low firing-rates in a compartmental model neuron , 1993 .

[13]  H. Vega,et al.  Boundary K-matrices for the six vertex and the n(2n-1)An-1 vertex models , 1992, hep-th/9211114.

[14]  Rafael I. Nepomechie,et al.  ADDENDUM: INTEGRABILITY OF OPEN SPIN CHAINS WITH QUANTUM ALGEBRA SYMMETRY , 1991, hep-th/9206047.

[15]  Rafael I. Nepomechie,et al.  Integrable open spin chains with nonsymmetric R-matrices , 1991 .

[16]  Rafael I. Nepomechie,et al.  Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms , 1990 .

[17]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[18]  V. Bazhanov Integrable quantum systems and classical Lie algebras , 1987 .

[19]  M. Jimbo QuantumR matrix for the generalized Toda system , 1986 .

[20]  V. Korepin,et al.  The inverse scattering method approach to the quantum Shabat-Mikhailov model , 1981 .

[21]  C. P. Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. III. Applications , 1966 .

[22]  Chen Ning Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. I. Proof of Bethe's Hypothesis for Ground State in a Finite System , 1966 .