Integral expressions for the semiclassical time‐dependent propagator

Rather general expressions are derived which represent the semiclassical time‐dependent propagator as an integral over initial conditions for classical trajectories. These allow one to propagate time‐dependent wave functions without searching for special trajectories that satisfy two‐time boundary conditions. In many circumstances, the integral expressions are free of singularities and provide globally valid uniform asymptotic approximations. In special cases, the expressions for the propagators are related to existing semiclassical wave function propagation techniques. More generally, the present expressions suggest a large class of other, potentially useful methods. The behavior of the integral expressions in certain limiting cases is analyzed to obtain simple formulas for the Maslov index that may be used to compute the Van Vleck propagator in a variety of representations.

[1]  U. Smilansky,et al.  The hamiltonian path integrals and the uniform semiclassical approximations for the propagator , 1977 .

[2]  Michael F. Herman Time reversal and unitarity in the frozen Gaussian approximation for semiclassical scattering , 1986 .

[3]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions. III. Uniformization Using Exact Trajectories , 1972 .

[4]  E. Heller,et al.  Hybrid mechanics: A combination of classical and quantum mechanics , 1988 .

[5]  Robbins,et al.  New way to compute Maslov indices. , 1987, Physical review. A, General physics.

[6]  D. Truhlar,et al.  Tests of semiclassical treatments of vibrational-translational energy transfer collinear collisions of helium with hydrogen molecules , 1975 .

[7]  E. Heller Classical S‐matrix limit of wave packet dynamics , 1976 .

[8]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[9]  P. Pechukas,et al.  TIME-DEPENDENT SEMICLASSICAL SCATTERING THEORY. I. POTENTIAL SCATTERING. , 1969 .

[10]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[11]  William H. Miller Dynamics of Molecular Collisions , 1976 .

[12]  Y. Weissman Semiclassical approximation in the coherent states representation , 1982 .

[13]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[14]  Angular distributions in electronically adiabatic hyperthermal collisions. An eikonal approach , 1993 .

[15]  R. Littlejohn The semiclassical evolution of wave packets , 1986 .

[16]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[17]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[18]  E. Heller,et al.  Hybrid mechanics. II , 1989 .

[19]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[20]  E. Heller,et al.  Generalized Gaussian wave packet dynamics , 1987 .

[21]  Focal points and the phase of the semiclassical propagator , 1978 .

[22]  P. Brumer,et al.  Semiclassical collision theory in the initial value representation: Efficient numerics and reactive formalism , 1992 .

[23]  William H. Miller,et al.  ANALYTIC CONTINUATION OF CLASSICAL MECHANICS FOR CLASSICALLY FORBIDDEN COLLISION PROCESSES. , 1972 .

[24]  H. Meyer,et al.  Exact wave packet propagation using time‐dependent basis sets , 1989 .

[25]  J. H. Van Vleck,et al.  The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .

[26]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[27]  Heller,et al.  Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy. , 1991, Physical review letters.

[28]  K. Kay Improved semiclassical propagation of wave packets , 1989 .

[29]  R. Littlejohn The Van Vleck formula, Maslov theory, and phase space geometry , 1992 .

[30]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[31]  R. T. Skodje,et al.  Physical origin of oscillations in the three‐dimensional collision amplitudes of heavy–light–heavy systems. Semiclassical quantization of chaotic scattering , 1993 .

[32]  J. Connor Asymptotic evaluation of multidimensional integrals for the S matrix in the semiclassical theory of inelastic and reactive molecular collisions , 1973 .

[33]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[34]  H. Metiu,et al.  A strategy for time dependent quantum mechanical calculations using a Gaussian wave packet representation of the wave function , 1985 .

[35]  E. Heller Generalized theory of semiclassical amplitudes , 1977 .

[36]  E. Heller,et al.  Generalized Gaussian wave packet dynamics, Schrödinger equation, and stationary phase approximation , 1988 .