Overdrive2k: Efficient Secure MPC over Z2k from Somewhat Homomorphic Encryption

Recently, Cramer et al. (CRYPTO 2018) presented a protocol, SPDZ2k, for actively secure multiparty computation for dishonest majority in the pre-processing model over the ring Z2k , instead of over a prime field Fp. Their technique used oblivious transfer for the pre-processing phase, more specifically the MASCOT protocol (Keller et al. CCS 2016). In this paper we describe a more efficient technique for secure multiparty computation over Z2k based on somewhat homomorphic encryption. In particular we adapt the Overdrive approach (Keller et al. EUROCRYPT 2018) to obtain a protocol which is more like the original SPDZ protocol (Damg̊ard et al. CRYPTO 2012). To accomplish this we introduce a special packing technique for the BGV encryption scheme operating on the plaintext space defined by the SPDZ2k protocol, extending the ciphertext packing method used in SPDZ to the case of Z2k . We also present a more complete pre-processing phase for secure computation modulo 2 by adding a new technique to produce shared random bits.

[1]  Craig Gentry,et al.  Better Bootstrapping in Fully Homomorphic Encryption , 2012, Public Key Cryptography.

[2]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[3]  Marcel Keller,et al.  On the Amortized Complexity of Zero-Knowledge Protocols , 2009, Journal of Cryptology.

[4]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[5]  Craig Gentry,et al.  Fully Homomorphic Encryption with Polylog Overhead , 2012, EUROCRYPT.

[6]  Marcel Keller,et al.  Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ Limits , 2013, ESORICS.

[7]  Shai Halevi,et al.  Algorithms in HElib , 2014, CRYPTO.

[8]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[9]  Ivan Damgård,et al.  Semi-Homomorphic Encryption and Multiparty Computation , 2011, IACR Cryptol. ePrint Arch..

[10]  Ivan Damgård,et al.  Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..

[11]  Mohammad Anagreh,et al.  Yet Another Compiler for Active Security or : Efficient MPC Over Arbitrary Rings , 2017 .

[12]  Nigel P. Smart,et al.  Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ , 2019, IACR Cryptol. ePrint Arch..

[13]  Erdem Alkim,et al.  Post-quantum Key Exchange - A New Hope , 2016, USENIX Security Symposium.

[14]  Yehuda Lindell,et al.  High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority , 2016, IACR Cryptol. ePrint Arch..

[15]  Marcel Keller,et al.  MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer , 2016, IACR Cryptol. ePrint Arch..

[16]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Frederik Vercauteren,et al.  Fully homomorphic SIMD operations , 2012, Designs, Codes and Cryptography.

[18]  Donald Beaver,et al.  Foundations of Secure Interactive Computing , 1991, CRYPTO.

[19]  Yuval Ishai,et al.  Efficient Multi-party Computation over Rings , 2003, EUROCRYPT.

[20]  Craig Gentry,et al.  Homomorphic Evaluation of the AES Circuit , 2012, IACR Cryptol. ePrint Arch..

[21]  Marcel Keller,et al.  New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[22]  Claudio Orlandi,et al.  A New Approach to Practical Active-Secure Two-Party Computation , 2012, IACR Cryptol. ePrint Arch..

[23]  Craig Gentry,et al.  (Leveled) fully homomorphic encryption without bootstrapping , 2012, ITCS '12.

[24]  T. Browning,et al.  Local Fields , 2008 .

[25]  Marcel Keller,et al.  Overdrive: Making SPDZ Great Again , 2018, IACR Cryptol. ePrint Arch..