Preoperative staging of non-small-cell lung cancer with positron-emission tomography.

BACKGROUND Determining the stage of non-small-cell lung cancer often requires multiple preoperative tests and invasive procedures. Whole-body positron-emission tomography (PET) may simplify and improve the evaluation of patients with this tumor. METHODS We prospectively compared the ability of a standard approach to staging (computed tomography [CT], ultrasonography, bone scanning, and, when indicated, needle biopsies) and one involving PET to detect metastases in mediastinal lymph nodes and at distant sites in 102 patients with resectable non-small-cell lung cancer. The presence of mediastinal metastatic disease was confirmed histopathologically. Distant metastases that were detected by PET were further evaluated by standard imaging tests and biopsies. Patients were followed postoperatively for six months by standard methods to detect occult metastases. Logistic-regression analysis was used to evaluate the ability of PET and CT to identify malignant mediastinal lymph nodes. RESULTS The sensitivity and specificity of PET for the detection of mediastinal metastases were 91 percent (95 percent confidence interval, 81 to 100 percent) and 86 percent (95 percent confidence interval, 78 to 94 percent), respectively. The corresponding values for CT were 75 percent (95 percent confidence interval, 60 to 90 percent) and 66 percent (95 percent confidence interval, 55 to 77 percent). When the results of PET and CT were adjusted for each other, only PET results were positively correlated with the histopathological findings in mediastinal lymph nodes (P<0.001). PET identified distant metastases that had not been found by standard methods in 11 of 102 patients. The sensitivity and specificity of PET for the detection of both mediastinal and distant metastatic disease were 95 percent (95 percent confidence interval, 88 to 100 percent) and 83 percent (95 percent confidence interval, 74 to 92 percent), respectively. The use of PET to identify the stage of the disease resulted in a different stage from the one determined by standard methods in 62 patients: the stage was lowered in 20 and raised in 42. CONCLUSIONS PET improves the rate of detection of local and distant metastases in patients with non-small-cell lung cancer.

[1]  M. Mandelkern,et al.  Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. , 1996, American journal of respiratory and critical care medicine.

[2]  P. Lewis,et al.  Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  G. V. von Schulthess,et al.  Detection of extrathoracic metastases by positron emission tomography in lung cancer. , 1998, The Annals of thoracic surgery.

[4]  J Bogaert,et al.  Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  P. Dupont,et al.  Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  C. Mountain,et al.  Revisions in the International System for Staging Lung Cancer. , 1997, Chest.

[7]  T Jones,et al.  Glucose utilization in vivo by human pulmonary neoplasms , 1987, Cancer.

[8]  M E Phelps,et al.  Whole-body positron emission tomography: Part I. Methods and performance characteristics. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  G. V. von Schulthess,et al.  Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. , 1997, Radiology.

[10]  R L Wahl,et al.  Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  J. Reed,et al.  Mediastinal staging of non-small-cell lung cancer with positron emission tomography. , 1995, American journal of respiratory and critical care medicine.

[12]  P. Rigo,et al.  Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer , 1998, European Journal of Nuclear Medicine.

[13]  R. Wahl,et al.  Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. , 1994, Radiology.

[14]  C. Mountain,et al.  Regional lymph node classification for lung cancer staging. , 1997, Chest.

[15]  M. Defrise,et al.  Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction , 1999, European Journal of Nuclear Medicine.

[16]  F. Maes,et al.  FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? , 1998, European Journal of Nuclear Medicine.

[17]  M P Frick,et al.  Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules. Potential role in evaluation and management. , 1993, Chest.

[18]  K. Hamacher,et al.  Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  T Ido,et al.  Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  P. Valk,et al.  Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. , 1995, The Annals of thoracic surgery.

[21]  R. Coleman,et al.  The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma , 1998, Cancer.

[22]  K Kubota,et al.  Lesion-to-background ratio in nonattenuation-corrected whole-body FDG PET images. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.