Solar System Observations with the James Webb Space Telescope

The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

[1]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[2]  James Roberts,et al.  Sustainability of a subsurface ocean within Triton's interior , 2012 .

[3]  T. McCord,et al.  Mars: The spectral albedo (0.3–2.5μ) of small bright and dark regions , 1971 .

[4]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[5]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[6]  J. Cuzzi,et al.  HST observations of spokes in Saturn's B ring , 2002 .

[7]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[8]  G. Rieke,et al.  JWST Planetary Observations Within the Solar System , 2010 .

[9]  P. Mahaffy,et al.  Low Upper Limit to Methane Abundance on Mars , 2013, Science.

[10]  A. Hayes,et al.  An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing , 2009 .

[11]  R. D. Lorenz,et al.  Rapid and Extensive Surface Changes Near Titan’s Equator: Evidence of April Showers , 2011, Science.

[12]  M. Segura,et al.  PacMan returns: An electron-generated thermal anomaly on Tethys , 2012 .

[13]  P. Nicholson,et al.  HST Observations of Saturnian Satellites during the 1995 Ring Plane Crossings , 2001 .

[14]  M. Showalter,et al.  The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy , 2004 .

[15]  C. Porco,et al.  Saturn's Spokes: Lost and Found , 2006, Science.

[16]  J. Burns,et al.  Saturn’s Curiously Corrugated C Ring , 2011, Science.

[17]  Understanding the behavior of Prometheus and Pandora , 2005, astro-ph/0511055.

[18]  Dean C. Hines,et al.  Spitzer Observations of the Dust Coma and Nucleus of 29P/Schwassmann-Wachmann 1 , 2004 .

[19]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[20]  A. J. Steffl,et al.  First Constraints on Rings in the Pluto System , 2007 .

[21]  Y. Longval,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager , 2015, 1508.02488.

[22]  C. Sotin,et al.  Detection and mapping of hydrocarbon deposits on Titan , 2010 .

[23]  T. McCord,et al.  Spectral Reflectivity of Mars , 1969, Science.

[24]  Bradford A. Smith,et al.  The Surface of Titan from NICMOS Observations with the Hubble Space Telescope , 2000 .

[25]  U. Fink,et al.  The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns , 1979 .

[26]  Douglas P. Hamilton,et al.  A deep search for Martian dust rings and inner moons using the Hubble Space Telescope , 2006 .

[27]  J. L. Hall,et al.  Detection of daily clouds on Titan. , 2000, Science.

[28]  C. Woodward,et al.  SPITZER OBSERVATIONS OF COMET 67P/CHURYUMOV-GERASIMENKO AT 5.5–4.3 AU FROM THE SUN , 2009, 0903.4187.

[29]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[30]  M. Showalter,et al.  Keck near-infrared observations of Saturn's E and G rings during Earth's ring plane crossing in August 1995 , 2004 .

[31]  K. Hand,et al.  H2O2 production by high-energy electrons on icy satellites as a function of surface temperature and electron flux , 2011 .

[32]  C. Sotin,et al.  THE ATMOSPHERES OF SATURN AND TITAN IN THE NEAR-INFRARED: FIRST RESULTS OF CASSINI/VIMS , 2006 .

[33]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[34]  J. Burns,et al.  The Impact of Comet Shoemaker-Levy 9 Sends Ripples Through the Rings of Jupiter , 2011, Science.

[35]  G. Orton,et al.  Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere , 2014, 1407.2120.

[36]  A. Sánchez-Lavega,et al.  An Introduction to Planetary Atmospheres , 2010 .

[37]  Imke de Pater,et al.  The Dark Side of the Rings of Uranus , 2007, Science.

[38]  C. Porco,et al.  The Behavior of Spokes in Saturn's B Ring , 2009 .

[39]  Vicki Balzano,et al.  Event-driven James Webb Space Telescope operations using on-board JavaScripts , 2006, SPIE Astronomical Telescopes + Instrumentation.

[40]  M. Showalter,et al.  The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage , 2005 .

[41]  J. Burns,et al.  Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites , 2011, 1106.1893.

[42]  Thomas B. McCord,et al.  Jupiter and Saturn - Near-infrared spectral albedos , 1979 .

[43]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[44]  H. Hammel,et al.  Near-infrared spectra of the uranian ring system , 2013 .

[45]  Alistair Glasse,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, IX: Predicted Sensitivity , 2015, 1508.02427.

[46]  R. Clark,et al.  Connections between spectra and structure in Saturn’s main rings based on Cassini VIMS data , 2012, 1210.4727.

[47]  T. Encrenaz,et al.  The 2.4– spectrum of Mars observed with the infrared space observatory , 2000 .

[48]  M. Showalter,et al.  New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring , 2006, Science.

[49]  C. Porco,et al.  Planetary Rings , 2019, Fundamental Planetary Science.

[50]  T. Schneider,et al.  Storms in the tropics of Titan , 2009, Nature.

[51]  M. Showalter,et al.  The Second Ring-Moon System of Uranus: Discovery and Dynamics , 2006, Science.

[52]  M. Showalter,et al.  Keck Infrared Observations of Saturn's E and G Rings during Earth's 1995 Ring Plane Crossings , 1996 .