Computational methods to identify miRNA targets.

MicroRNAs (miRNAs) are short RNA molecules that regulate the post-transcriptional expression of their target genes. This regulation may take the form of stable translational or degradation of the target transcript, although the mechanisms governing the outcome of miRNA-mediated regulation remain largely unknown. While it is becoming clear that miRNAs are core components of gene regulatory networks, elucidating precise roles for each miRNA within these networks will require an accurate means of identifying target genes and assessing the impact of miRNAs on individual targets. Numerous computational methods for predicting targets are currently available. These methods vary widely in their emphasis, accuracy, and ease of use for researchers. This review will focus on a comparison of the available computational methods in animals, with an emphasis on approaches that are informed by experimental analysis of microRNA:target complexes.

[1]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  V. Ambros,et al.  Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets , 2009, Proceedings of the National Academy of Sciences.

[4]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[5]  C. Croce,et al.  MiR-15a and miR-16-1 cluster functions in human leukemia , 2008, Proceedings of the National Academy of Sciences.

[6]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[7]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[8]  M. Gromeier,et al.  Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. , 2010, RNA.

[9]  Yu-Ping Wang,et al.  MiRTif: a support vector machine-based microRNA target interaction filter , 2008, BMC Bioinformatics.

[10]  Vetle I. Torvik,et al.  Complications in mammalian microRNA target prediction. , 2006, Methods in molecular biology.

[11]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[12]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[13]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[14]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[15]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[16]  V. Ambros,et al.  Systematic analysis of dynamic miRNA-target interactions during C. elegans development , 2009, Development.

[17]  Lawrence S. Hon,et al.  The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression , 2007, Genome Biology.

[18]  Sanghamitra Bandyopadhyay,et al.  TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples , 2009, Bioinform..

[19]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[20]  Wenbin Ye,et al.  The Effect of Central Loops in miRNA:MRE Duplexes on the Efficiency of miRNA-Mediated Gene Regulation , 2008, PloS one.

[21]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[22]  Guihua Sun,et al.  Sequence context outside the target region influences the effectiveness of miR-223 target sites in the RhoB 3′UTR , 2009, Nucleic acids research.

[23]  Curtis Balch,et al.  MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression , 2009, Nucleic Acids Res..

[24]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[25]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[26]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[27]  Mark A. Ragan,et al.  Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH , 2009, PloS one.

[28]  C. Hammell The microRNA-argonaute complex: A platform for mRNA modulation , 2008, RNA biology.

[29]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[30]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[31]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[32]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[33]  Oliver Hobert,et al.  UTR ′ Molecular architecture of a miRNA-regulated 3 Material Supplemental , 2008 .

[34]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[35]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[36]  Peter A. Jones,et al.  MicroRNAs: critical mediators of differentiation, development and disease. , 2009, Swiss medical weekly.

[37]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[38]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[39]  V. Ambros,et al.  nhl-2 Modulates MicroRNA Activity in Caenorhabditis elegans , 2009, Cell.

[40]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[41]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[42]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[43]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[44]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[45]  Vesselin Baev,et al.  MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence , 2005, Nucleic Acids Res..

[46]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[47]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[48]  Vincent Moulton,et al.  A scoring matrix approach to detecting miRNA target sites , 2008, Algorithms for Molecular Biology.

[49]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[50]  J. Steitz,et al.  miRNPs: versatile regulators of gene expression in vertebrate cells. , 2009, Biochemical Society transactions.

[51]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[52]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[53]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[55]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[56]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[57]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[58]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[59]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[60]  Mihaela Zavolan,et al.  Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. , 2009, Genome research.

[61]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[62]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[63]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[64]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[65]  Hazel Sive,et al.  Coherent but overlapping expression of microRNAs and their targets during vertebrate development. , 2009, Genes & development.

[66]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[67]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[68]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[69]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[70]  J. Yates,et al.  Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. , 2009, Molecular cell.

[71]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[72]  Eugene Berezikov,et al.  The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors , 2009, Cell.