Battery-drive atmospheric pressure plasma jet for mass spectrometry applications

This paper presents a battery-drive atmospheric pressure plasma jet (APPJ) as the ion source for ambient mass spectrometry analysis of Chinese herbs. The AP plasma jet is generated under a dielectric barrier discharge (DBD) scheme in a low-cost glass tube for producing high density ions. Volatile specimens in solid Chinese herbs is directly analyzed using the mass spectrometry without delicate sample preparation procedures. The developed APPJ ion source can generate stable plasma for MS analysis under a low power consumption of 1.56 W. The generated ion intensity reaches 108 ion/cm3 and the temperature of the APPJ ion source is lower than 50°C under normal operation. Experimental results indicate that the developed APPJ ion source can successfully detect the solid samples of ground coffee beans and a mixed sample of Chinese herbs. The characteristic ingredients for the solid samples can be rapidly ionized with the APPJ ion source and then detected by the mass spectrometer in seconds. The APPJ-MS system developed in the present study provides a simple yet high efficient way for detecting the ingredients of natural products under an ambient mass spectrometry apparatus.

[1]  Michael A. Freitas,et al.  The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter , 2002 .

[2]  Y. Horiike,et al.  An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample , 2003 .

[3]  Michael G. Roper,et al.  Microfluidics-to-mass spectrometry: a review of coupling methods and applications. , 2015, Journal of chromatography. A.

[4]  Yiqian Wang,et al.  Fabrication of Au-CU2O core-shell nanocube heterostructures , 2008 .

[5]  J. Hopwood,et al.  A microfabricated inductively coupled plasma generator , 2000, Journal of Microelectromechanical Systems.

[6]  Chen Wenjun,et al.  A Microfabricated Inductively Coupled Plasma Excitation Source , 2008 .

[7]  Che-Hsin Lin,et al.  Novel Atmospheric Pressure Plasma Utilizing Symmetric Dielectric Barrier Discharge for Mass Spectrometry Applications , 2014, IEEE Transactions on Plasma Science.

[8]  Vassili Karanassios,et al.  Microplasmas for chemical analysis: analytical tools or research toys? , 2004 .

[9]  R. Rach,et al.  A new parametric algorithm for isothermal flash calculations by the Adomian decomposition of Michaelis–Menten type nonlinearities , 2015 .

[10]  D. Go,et al.  An analytical formulation for the modified Paschen's curve , 2010 .

[11]  H. C. Miller Paschen Curve in Nitrogen , 1963 .

[12]  P. Hauser,et al.  A capacitively coupled microplasma in a fused silica capillary , 2003 .

[13]  Chien-Hsiung Tsai,et al.  Rapid circular microfluidic mixer utilizing unbalanced driving force , 2007, Biomedical microdevices.

[14]  S. Rowland,et al.  Gas chromatography-microwave-induced plasma mass spectrometry (GC-MIP-MS) : a multi-element analytical tool for organic geochemistry , 1997 .

[15]  David B. Go,et al.  A mathematical model of the modified Paschen's curve for breakdown in microscale gaps , 2010 .

[16]  S. M. Lee,et al.  Paschen breakdown curve by one-dimensional PIC-MCC simulation , 2007, Comput. Phys. Commun..

[17]  Y. Horiike,et al.  Capacitively Coupled Microplasma Source on a Chip at Atmospheric Pressure , 2001 .

[18]  Che-Hsin Lin,et al.  On the surface modification of microchannels for microcapillary electrophoresis chips , 2005, Electrophoresis.

[19]  D. Go,et al.  Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve , 2014 .