High-fidelity spin measurement on the nitrogen-vacancy center

Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center's parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

[1]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[2]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[5]  Brant C. Gibson,et al.  Critical components for diamond-based quantum coherent devices , 2006 .

[6]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[7]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[8]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[9]  A. Janotti,et al.  Quantum computing with defects , 2013 .

[10]  M. Markham,et al.  High-fidelity transfer and storage of photon states in a single nuclear spin , 2015, Nature Photonics.

[11]  W. Marsden I and J , 2012 .

[12]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[13]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[14]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[15]  D. Budker,et al.  Optical properties of the nitrogen-vacancy singlet levels in diamond , 2010, 1009.0032.

[16]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[17]  J. O'Brien Optical Quantum Computing , 2007, Science.

[18]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[19]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[20]  Collins,et al.  Vacancy-related centers in diamond. , 1992, Physical review. B, Condensed matter.

[21]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[22]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[23]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[24]  A. Zaitsev,et al.  Vibronic spectra of impurity-related optical centers in diamond , 2000 .

[25]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[26]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[28]  S. Ya. Kilin,et al.  A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins , 2005 .

[29]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[30]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[31]  D. Budker,et al.  Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond , 2013, 1301.6197.

[32]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[33]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[34]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[35]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[36]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[37]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[38]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[39]  R. Feynman Simulating physics with computers , 1999 .

[40]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[41]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[42]  M B Plenio,et al.  Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins. , 2016, Physical review letters.

[43]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[44]  S. Ya. Kilin,et al.  Quantum computation using the 13C nuclear spins near the single NV defect center in diamond , 2001 .

[45]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[46]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[47]  Brad A. Kairdolf,et al.  Semiconductor quantum dots for bioimaging and biodiagnostic applications. , 2013, Annual review of analytical chemistry.

[48]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[49]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[50]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[51]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[52]  Jeremy L O'Brien,et al.  Cavity enhanced spin measurement of the ground state spin of an NV center in diamond , 2009 .

[53]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[54]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[55]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[56]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[57]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[58]  Zhang-qi Yin,et al.  High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation , 2011 .

[59]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[60]  Entangling homogeneously broadened matter qubits in the weak-coupling cavity-QED regime , 2012, 1205.0060.

[61]  Patterned Formation of Highly Coherent Nitrogen-Vacancy Centers Using a Focused Electron Irradiation Technique. , 2015, Nano letters.

[62]  Shanhui Fan,et al.  Few-Photon Single-Atom Cavity QED With Input-Output Formalism in Fock Space , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[64]  Hannes Bernien,et al.  Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. , 2010, Physical review letters.

[65]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[66]  Jiangfeng Du,et al.  Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions , 2015, Nature Communications.

[67]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[68]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[69]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[70]  S. Wehner,et al.  Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis , 2016, Scientific Reports.

[71]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[72]  Robert C. Hilborn,et al.  Einstein coefficients, cross sections, f values, dipole moments, and all that , 1982, physics/0202029.

[73]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[74]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[75]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[76]  A. Greentree,et al.  Diamond integrated quantum photonics , 2008 .

[77]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[78]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[79]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[80]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[81]  L. Lugiato,et al.  Cooperative effects and bistability for resonance fluorescence , 1976 .

[82]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[83]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[84]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[85]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[86]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[87]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[88]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[89]  A. T. Collins,et al.  Luminescence decay time of the 1.945 eV centre in type Ib diamond , 1983 .

[90]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[91]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[92]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[93]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[94]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[95]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[96]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[97]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[98]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[99]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[100]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[101]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[102]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[103]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[104]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[105]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[106]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[107]  R. Brouri,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[108]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[109]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[110]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[111]  Andrew Dzurak,et al.  Quantum computing: Diamond and silicon converge , 2011, Nature.

[112]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[113]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[114]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[115]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[116]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[117]  Christoph Pauly,et al.  Narrow-band single photon emission at room temperature based on a single Nitrogen-vacancy center coupled to an all-fiber-cavity , 2014, 1407.5825.

[118]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[119]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[120]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[121]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[122]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[123]  G. Davies,et al.  Vibronic spectra in diamond , 1974 .

[124]  Single-shot optical readout of a quantum bit using cavity quantum electrodynamics , 2016, 1602.04367.

[125]  Norbert Kalb,et al.  Robust quantum-network memory using decoherence-protected subspaces of nuclear spins , 2016, 1603.01602.

[126]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[127]  N. Yao,et al.  Erratum: State-selective intersystem crossing in nitrogen-vacancy centers [Phys. Rev. B 91 , 165201 (2015)] , 2017 .

[128]  Alexander P. Nizovtsev,et al.  Single spin states in a defect center resolved by optical spectroscopy , 2002 .

[129]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[130]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[131]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[132]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[133]  Jiangfeng Du,et al.  Quantum information processing and metrology with color centers in diamonds , 2014 .

[134]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[135]  Raymond G. Beausoleil,et al.  Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond , 2008 .

[136]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[137]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[138]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[139]  Philip R. Hemmer,et al.  Quantum computing with nitrogen-vacancy pairs in diamond , 2005, SPIE International Symposium on Fluctuations and Noise.

[140]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[141]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[142]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[143]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[144]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[145]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[146]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[147]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[148]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[149]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[150]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[151]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[152]  Anchal Gupta,et al.  Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond , 2015, 1511.04407.

[153]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.

[154]  Jakob Reichel,et al.  Measurement of the internal state of a single atom without energy exchange , 2011, Nature.

[155]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.