Light-Powered Self-Healable Metallosupramolecular Soft Actuators.

Supramolecular functional materials able to respond to external stimuli have several advantages over their classical covalent counterparts. The preparation of soft actuators with the ability to respond to external stimuli in a spatiotemporal fashion, to self-repair, and to show directional motion, is currently one of the most challenging research goals. Herein, we report a series of metallopolymers based on zinc(II)-terpyridine coordination nodes and bearing photoisomerizable diazobenzene units and/or solubilizing luminescent phenylene-ethynylene moieties. These supramolecular polymers act as powerful gelating agents at low critical gelation concentrations. The resulting multiresponsive organogels display light-triggered mechanical actuation and luminescent properties. Furthermore, owing to the presence of dynamic coordinating bonds, they show self-healing abilities.

[1]  Yanlei Yu,et al.  Photomechanik flüssigkristalliner Elastomere und anderer Polymere , 2007 .

[2]  R. Schmehl,et al.  Preferential solvation of an ILCT excited state in bis(terpyridine-phenylene-vinylene) Zn(II) complexes. , 2002, Chemical communications.

[3]  Stefan Hecht,et al.  Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. , 2014, Chemical Society reviews.

[4]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[5]  Martin D Hager,et al.  Functional soft materials from metallopolymers and metallosupramolecular polymers. , 2011, Nature materials.

[6]  S. Hecht,et al.  Light-orchestrated macromolecular "accordions": reversible photoinduced shrinking of rigid-rod polymers. , 2011, Angewandte Chemie.

[7]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[8]  Feihe Huang,et al.  Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. , 2015, Chemical reviews.

[9]  B. Mazzolai,et al.  Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators , 2015, Advanced materials.

[10]  Molla R. Islam,et al.  Polymer-based muscle expansion and contraction. , 2013, Angewandte Chemie.

[11]  Akira Harada,et al.  Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.

[12]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[13]  Takao Aoyagi,et al.  Photo-switchable control of pH-responsive actuators via pH jump reaction , 2012 .

[14]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[15]  J. Lehn,et al.  Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. , 2007, Angewandte Chemie.

[16]  Sijbren Otto,et al.  Supramolecular systems chemistry. , 2015, Nature nanotechnology.

[17]  J. Nitschke,et al.  Stimuli-Responsive Metal-Ligand Assemblies. , 2015, Chemical reviews.

[18]  J. Rack,et al.  Bending Materials with Light: Photoreversible Macroscopic Deformations in a Disordered Polymer , 2011, Advanced materials.

[19]  U. Schubert,et al.  Syntheses of Functionalized 2,2′:6′,2′′‐Terpyridines , 2003 .

[20]  Gustavo Fernández,et al.  Metallosupramolecular amphiphilic π-systems , 2012 .

[21]  J. Lehn Perspectives in chemistry--steps towards complex matter. , 2013, Angewandte Chemie.

[22]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[23]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[24]  M. Higuchi,et al.  Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. , 2008, Journal of the American Chemical Society.

[25]  S. Zwaag Self‐Healing Materials , 2007 .

[26]  A. Schenning,et al.  Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. , 2014, Journal of the American Chemical Society.

[27]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[28]  Feihe Huang,et al.  Characterization of supramolecular gels. , 2013, Chemical Society reviews.

[29]  Mounir Maaloum,et al.  Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. , 2015, Nature nanotechnology.

[30]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[31]  S. Rowan,et al.  Synthesis and optical properties of metallo-supramolecular polymers. , 2005, Chemical communications.

[32]  U. Schubert,et al.  Synthesis and Characterization of New Self-Assembled Metallo-Polymers Containing Electron-Withdrawing and Electron-Donating Bis(terpyridine) Zinc(II) Moieties , 2010 .

[33]  H. Nishihara,et al.  Synthesis and Physical Properties of a π-Conjugated Ruthenium(II) Dinuclear Complex Involving an Azobenzene-Bridged Bis(terpyridine) Ligand , 2000 .

[34]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[35]  J. Lehn,et al.  Metallodynamers: neutral double-dynamic metallosupramolecular polymers. , 2008, Chemistry, an Asian journal.

[36]  R. Kasi,et al.  Stimuli-responsive polymer gels. , 2008, Soft matter.

[37]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[38]  D. Kurth,et al.  From coordination complexes to coordination polymers through self-assembly , 2009 .

[39]  Xinxin Tan,et al.  Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. , 2015, Chemical reviews.

[40]  Akira Harada,et al.  Self-Healing, Expansion-Contraction, and Shape-Memory Properties of a Preorganized Supramolecular Hydrogel through Host-Guest Interactions. , 2015, Angewandte Chemie.

[41]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[42]  P. Keller,et al.  Micron-sized liquid crystalline elastomer actuators , 2011 .

[43]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[44]  Bo Zheng,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[45]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[46]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[47]  R. Ziessel,et al.  STEPWISE CONSTRUCTION OF RIGID ROD-LIKE TERPYRIDINE LIGANDS BASED ON ALTERNATING ETHYNYL/PHENYL MODULES , 1999 .

[48]  Y. Takashima,et al.  Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions , 2012, Nature Communications.

[49]  J. Lehn Perspektiven der Chemie – Stufen zur komplexen Materie , 2013 .