Extending kernel perfect digraphs to kernel perfect critical digraphs

Abstract In this paper we prove that any R -digraph is an induced subdigraph of an infinite set of R -digraphs. The method employed in the proof can be used as a powerful tool in the construction of a large class of R -digraphs.

[1]  Henry Meyniel,et al.  A note on kernel-critical graphs , 1981, Discret. Math..

[2]  M. Richardson,et al.  Solutions of Irreflexive Relations , 1953 .

[3]  Hortensia Galeana-Sánchez,et al.  On kernels and semikernels of digraphs , 1984, Discret. Math..

[4]  Hortensia Galeana-Sánchez,et al.  On kernel-perfect critical digraphs , 1986, Discret. Math..

[5]  M. Richardson Extension Theorems for Solutions of Irreflexive Relations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Hortensia Galeana-Sánchez,et al.  A counterexample to a conjecture of meyniel on kernel-perfect graphs , 1982, Discret. Math..

[7]  M. Richardson On weakly ordered systems , 1946 .

[8]  Victor Neumann-Lara,et al.  The dichromatic number of a digraph , 1982, J. Comb. Theory, Ser. B.

[9]  P. Duchet,et al.  Graphes Noyau-Parfaits , 1980 .