Local Expanders

A map $${f : \{0,1\}^{n} \to \{0,1\}^{n}}$$f:{0,1}n→{0,1}n has localityt if every output bit of f depends only on t input bits. Arora et al. (Colloquium on automata, languages and programming, ICALP, 2009) asked if there exist bounded-degree expander graphs on 2n nodes such that the neighbors of a node $${x\in\{0,1\}^{n}}$$x∈{0,1}n can be computed by maps of constant locality. We give an explicit construction of such graphs with locality one. We then give three applications of this construction: (1) lossless expanders with constant locality, (2) more efficient error reduction for randomized algorithms, and (3) more efficient hardness amplification of one-way permutations. We also give, for n of the form $${n=4\cdot3^{t}}$$n=4·3t, an explicit construction of bipartite Ramanujan graphs of degree 3 with 2n−1 nodes in each side such that the neighbors of a node $${x\in \{0,1\}^{n}{\setminus} \{0^{n}\}}$$x∈{0,1}n\{0n} can be computed either (1) in constant locality or (2) in constant time using standard operations on words of length $${\Omega(n)}$$Ω(n). Our results use in black-box fashion deep explicit constructions of Cayley expander graphs, by Kassabov (Invent Math 170(2):327–354, 2007) for the symmetric group $${S_{n}}$$Sn and by Morgenstern (J Comb Theory Ser B 62(1):44–62, 1994) for the special linear group SL$${(2,F_{2^{n}})}$$(2,F2n).

[1]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[2]  Emanuele Viola,et al.  Short PCPs with Projection Queries , 2014, ICALP.

[3]  Luca Trevisan,et al.  On epsilon-Biased Generators in NC0 , 2003, Electron. Colloquium Comput. Complex..

[4]  A. Wigderson,et al.  ENTROPY WAVES, THE ZIG-ZAG GRAPH PRODUCT, AND NEW CONSTANT-DEGREE , 2004, math/0406038.

[5]  Yuval Ishai,et al.  Cryptography in NC0 , 2004, SIAM J. Comput..

[6]  Emanuele Viola,et al.  Fooling Parity Tests with Parity Gates , 2004, APPROX-RANDOM.

[7]  Hamidreza Jahanjou,et al.  Local Reductions , 2013, ICALP.

[8]  Noga Alon,et al.  Explicit unique-neighbor expanders , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[9]  Martin Kassabov,et al.  Symmetric groups and expander graphs , 2005 .

[10]  Akira Maruoka,et al.  Expanders obtained from affine transformations , 1985, STOC '85.

[11]  Emanuele Viola The Complexity of Distributions , 2012, SIAM J. Comput..

[12]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[13]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 1, Basic Tools , 2001 .

[14]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[15]  Avi Wigderson,et al.  Towards a Study of Low-Complexity Graphs , 2009, ICALP.

[16]  Ryan Williams Nonuniform ACC Circuit Lower Bounds , 2014, JACM.

[17]  Peter Bro Miltersen,et al.  On Pseudorandom Generators in NC , 2001, MFCS.

[18]  Avi Wigderson,et al.  Iterative Construction of Cayley Expander Graphs , 2006, Theory Comput..

[19]  Avi Wigderson,et al.  Deterministic amplification of space-bounded probabilistic algorithms , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[20]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[21]  Noga Alon,et al.  Semi-direct product in groups and zig-zag product in graphs: connections and applications , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[22]  Nikhil Srivastava,et al.  Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[23]  Dieter van Melkebeek,et al.  Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines , 2006, SIAM J. Comput..

[24]  Salil P. Vadhan,et al.  Pseudorandomness , 2012, Found. Trends Theor. Comput. Sci..

[25]  Zvi Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[26]  Oded Goldreich,et al.  Candidate One-Way Functions Based on Expander Graphs , 2000, Studies in Complexity and Cryptography.

[27]  Peter Bro Miltersen,et al.  On pseudorandom generators in NC 0 ⋆ , 2001 .

[28]  ApplebaumBenny,et al.  Cryptography in $NC^0$ , 2006 .

[29]  Leonid A. Levin,et al.  Security preserving amplification of hardness , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[30]  Avi Wigderson,et al.  Dispersers, deterministic amplification, and weak random sources , 1989, 30th Annual Symposium on Foundations of Computer Science.

[31]  M. Murty Ramanujan Graphs , 1965 .

[32]  Emanuele Viola,et al.  Constant-Depth Circuits for Arithmetic in Finite Fields of Characteristic Two , 2006, STACS.

[33]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .