Some Applications of Fractional Equations

Abstract We present two observations related to the application of linear (LFE) and nonlinear fractional equations (NFE). First, we give the comparison and estimates of the role of the fractional derivative term to the normal diffusion term in a LFE. The transition of the solution from normal to anomalous transport is demonstrated and the dominant role of the power tails in the long time asymptotics is shown. Second, wave propagation or kinetics in a nonlinear media with fractal properties is considered. A corresponding fractional generalization of the Ginzburg–Landau and nonlinear Schrodinger equations is proposed.