Motor control of Drosophila feeding behavior

The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences. DOI: http://dx.doi.org/10.7554/eLife.19892.001

[1]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[2]  J. Hounsgaard,et al.  Dense Distributed Processing in a Hindlimb Scratch Motor Network , 2014, The Journal of Neuroscience.

[3]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[4]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[5]  Aaron DiAntonio,et al.  Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS , 2008, The Journal of comparative neurology.

[6]  C. Nichols,et al.  Methods to assay Drosophila behavior. , 2012, Journal of visualized experiments : JoVE.

[7]  Jonathan E. Rubin,et al.  Conditions for Multi-functionality in a Rhythm Generating Network Inspired by Turtle Scratching , 2015, Journal of mathematical neuroscience.

[8]  Kristin Scott,et al.  Limited taste discrimination in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[9]  R. Mann,et al.  Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg , 2008, Development.

[10]  L. Strong,et al.  Arthropod brain (its evolution, development, structure and functions): A. P. Gupta (Ed.), 588 pp. Published by John Wiley & Sons, New York, 1987. Price £60. ISBN 0-471-82811-4 , 1988 .

[11]  Organization of motor neurons innervating the proboscis musculature in Drosophila melanogaster meigen (diptera : Drosophilidae) , 1994 .

[12]  Elizabeth H. Chen,et al.  Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. , 2001, Developmental cell.

[13]  C. Montell A taste of the Drosophila gustatory receptors , 2009, Current Opinion in Neurobiology.

[14]  G Laurent,et al.  Local Control of Leg Movements and Motor Patterns during Grooming in Locusts , 1996, The Journal of Neuroscience.

[15]  Tzumin Lee,et al.  Organization and Postembryonic Development of Glial Cells in the Adult Central Brain of Drosophila , 2008, The Journal of Neuroscience.

[16]  R. Fetter,et al.  Hts/Adducin Controls Synaptic Elaboration and Elimination , 2011, Neuron.

[17]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[18]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[19]  Claire E McKellar,et al.  Motor control of fly feeding , 2016, Journal of neurogenetics.

[20]  Proboscis extension and retraction in the blowfly, Calliphora vicina , 1980 .

[21]  Michael H. Dickinson,et al.  Automated monitoring and quantitative analysis of feeding behaviour in Drosophila , 2014, Nature Communications.

[22]  E. Dorinda Loeffel,et al.  The Hungry Fly: A Physiological Study of the Behavior Associated With Feeding , 1977 .

[23]  Marco Tripodi,et al.  Motor antagonism exposed by spatial segregation and timing of neurogenesis , 2011, Nature.

[24]  Toshiaki Endo,et al.  Identification of Minimal Neuronal Networks Involved in Flexor-Extensor Alternation in the Mammalian Spinal Cord , 2011, Neuron.

[25]  Anthony J Clare,et al.  Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect , 2014, Journal of Neuroscience.

[26]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[27]  Alan Roberts,et al.  Behavioral Neuroscience , 2022 .

[28]  N. Ryba,et al.  Common Sense about Taste: From Mammals to Insects , 2009, Cell.

[29]  J. Carlson,et al.  Proboscis extension response (PER) assay in Drosophila. , 2007, Journal of visualized experiments : JoVE.

[30]  Daryl M. Gohl,et al.  Motor neurons controlling fluid ingestion in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[31]  R. Mann,et al.  Lineage and Birth Date Specify Motor Neuron Targeting and Dendritic Architecture in Adult Drosophila , 2009, The Journal of Neuroscience.

[32]  P. Guertin The mammalian central pattern generator for locomotion , 2009, Brain Research Reviews.

[33]  G. Pollack,et al.  Proboscis extension in the blowfly: directional responses to stimulation of identified chemosensitive hairs , 1987, Journal of Comparative Physiology A.

[34]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[35]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[36]  Kristin Scott,et al.  Taste Representations in the Drosophila Brain , 2004, Cell.

[37]  O. Kiehn,et al.  Dual-mode operation of neuronal networks involved in left–right alternation , 2013, Nature.

[38]  T. Aigaki,et al.  The Drosophila TRPA channel, Painless, regulates sexual receptivity in virgin females , 2009, Genes, brain, and behavior.

[39]  Kei Ito,et al.  A single pair of interneurons commands the Drosophila feeding motor program , 2013, Nature.

[40]  A. Büschges,et al.  Insect motor control: methodological advances, descending control and inter-leg coordination on the move , 2015, Current Opinion in Neurobiology.

[41]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[42]  N. Meunier,et al.  Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. , 2004, Journal of neurobiology.

[43]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[44]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[45]  Julie H. Simpson,et al.  A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila , 2014, eLife.

[46]  Andrey Rzhetsky,et al.  A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila , 2001, Cell.

[47]  Julie H. Simpson,et al.  Drosophila Brainbow: a recombinase-based fluorescent labeling technique to subdivide neural expression patterns , 2011, Nature Methods.

[48]  K. VijayRaghavan,et al.  Developmental origins and architecture of Drosophila leg motoneurons , 2012, The Journal of comparative neurology.

[49]  D. J. McKay,et al.  Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. , 2008, Developmental cell.

[50]  S. Meister,et al.  Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system , 2001, Current Biology.

[51]  G. S. Graham-Smith,et al.  Further Observations on the Anatomy and Function of the Proboscis of the Blow-Fly, Calliphora erythrocephala L. , 1930 .

[52]  Timothy A. Machado,et al.  Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity , 2015, Cell.

[53]  P. Stein,et al.  Alternation of agonists and antagonists during turtle hindlimb motor rhythms , 2010, Annals of the New York Academy of Sciences.

[54]  Volker Durr,et al.  Graded limb targeting in an insect is caused by the shift of a single movement pattern. , 2003, Journal of neurophysiology.

[55]  Toshiaki Endo,et al.  Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord , 2008, Neuron.

[56]  B. Dickson,et al.  Genome-scale functional characterization of Drosophila developmental enhancers in vivo , 2014, Nature.

[57]  Stefan R. Pulver,et al.  Selective Inhibition Mediates the Sequential Recruitment of Motor Pools , 2016, Neuron.

[58]  H. Amrein,et al.  Taste Perception and Coding in Drosophila , 2004, Current Biology.

[59]  Julie H. Simpson,et al.  A neural command circuit for grooming movement control , 2015, eLife.

[60]  J. C. Hall The mating of a fly. , 1994, Science.

[61]  T. Jessell,et al.  Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements , 2004, Neuron.

[62]  J. Carlson,et al.  Candidate taste receptors in Drosophila. , 2000, Science.

[63]  T. Kitamoto Conditional disruption of synaptic transmission induces male–male courtship behavior in Drosophila , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. N. Singh Neurobiology of the gustatory systems of Drosophila and some terrestrial insects , 1997, Microscopy research and technique.

[65]  R. Stocker,et al.  Drosophila P[Gal4] lines reveal that motor neurons involved in feeding persist through metamorphosis. , 1998, Journal of neurobiology.

[66]  Vincent G. Dethier,et al.  The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding , 1976 .

[67]  Silvia Arber,et al.  Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord , 2015, Neuron.

[68]  E. Marder,et al.  Invertebrate Central Pattern Generation Moves along , 2005, Current Biology.

[69]  M. Demerec,et al.  Biology of Drosophila , 1950 .

[70]  R. Falk,et al.  Labellar taste organs of Drosophila melanogaster , 1976, Journal of morphology.

[71]  George Z. Mentis,et al.  Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits , 2016, Cell.

[72]  D. J. McKay,et al.  The origins of the Drosophila leg revealed by the cis-regulatory architecture of the Distalless gene , 2009, Development.

[73]  Valerie C. Siembab,et al.  V1 and V2b Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion , 2014, Neuron.

[74]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[75]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[76]  Reinhard F. Stocker,et al.  The organization of the chemosensory system in Drosophila melanogaster: a rewiew , 2004, Cell and Tissue Research.

[77]  H. Reichert,et al.  Crayfish escape behavior: Neurobehavioral analysis of phasic extension reveals dual systems for motor control , 1981, Journal of comparative physiology.

[78]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[79]  G. Morata How drosophila appendages develop , 2001, Nature Reviews Molecular Cell Biology.

[80]  Cédric Soler,et al.  Coordinated development of muscles and tendons of the Drosophila leg , 2004, Development.

[81]  A. Büschges,et al.  New Moves in Motor Control , 2011, Current Biology.