The Atlas Structure of Images
暂无分享,去创建一个
[1] Jing Li,et al. A comprehensive review of current local features for computer vision , 2008, Neurocomputing.
[2] Lewis D. Griffin,et al. Segmentation of phase contrast microscopy images based on multi-scale local Basic Image Features histograms , 2017, Comput. methods Biomech. Biomed. Eng. Imaging Vis..
[3] Andrea J. van Doorn,et al. The Structure of Locally Orderless Images , 1999, International Journal of Computer Vision.
[4] J. P. Jones,et al. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.
[5] Krystian Mikolajczyk,et al. Learning local feature descriptors with triplets and shallow convolutional neural networks , 2016, BMVC.
[6] Christian Heipke,et al. INVARIANT DESCRIPTOR LEARNING USING A SIAMESE CONVOLUTIONAL NEURAL NETWORK , 2016 .
[7] Benjamin B. Kimia,et al. On the role of medial geometry in human vision , 2003, Journal of Physiology-Paris.
[8] Andrea J. van Doorn,et al. Image Processing Done Right , 2002, ECCV.
[9] Igor S. Pandzic,et al. Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion : Applications to Face Matching , Learning from Unlabeled Videos and 3 D-Shape Retrieval , 2016 .
[10] Johan Wagemans,et al. The nature of the visual field, a phenomenological analysis , 2015, Pattern Recognit. Lett..
[11] Bill Triggs,et al. Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[12] David J. Field,et al. How Close Are We to Understanding V1? , 2005, Neural Computation.
[13] L. Debnath,et al. On Hermite transform , 1964 .
[14] Bin Fan,et al. L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[15] Premkumar Elangovan,et al. Improved segmentation of meteorite micro-CT images using local histograms , 2012, Comput. Geosci..
[16] Shai Avidan,et al. Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[17] Andrea Vedaldi,et al. HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[18] Hervé Jégou,et al. Kernel Local Descriptors with Implicit Rotation Matching , 2015, ICMR.
[19] Bram van Ginneken,et al. Applications of Locally Orderless Images , 2000, J. Vis. Commun. Image Represent..
[20] Marco Loog,et al. The Jet Metric , 2007, SSVM.
[21] Tony Lindeberg,et al. A computational theory of visual receptive fields , 2013, Biological Cybernetics.
[22] Lewis D. Griffin,et al. Basic Image Features (BIFs) Arising from Approximate Symmetry Type , 2009, SSVM.
[23] Tony Lindeberg,et al. Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition , 2012, Comput. Vis. Image Underst..
[24] S. Pillai,et al. The Perron-Frobenius theorem: some of its applications , 2005, IEEE Signal Processing Magazine.
[25] Roelfsema Pieter. Cortical algorithms for perceptual grouping , 2008 .
[26] J. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.
[27] J. Koenderink,et al. Representation of local geometry in the visual system , 1987, Biological Cybernetics.
[28] Lewis D. Griffin. Scale-imprecision space , 1997, Image and Vision Computing.
[29] Lewis D. Griffin. The Second Order Local-Image-Structure Solid , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[30] Benoit Mory,et al. Scale-Space Image Analysis Based on Hermite Polynomials Theory , 2003, International Journal of Computer Vision.
[31] William T. Freeman,et al. Presented at: 2nd Annual IEEE International Conference on Image , 1995 .
[32] Tony Lindeberg,et al. On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.
[33] Tony Lindeberg,et al. Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space , 2011, Journal of Mathematical Imaging and Vision.
[34] Liliana Albertazzi,et al. Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance , 2013 .
[35] Tony Lindeberg,et al. Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.
[36] J. Koenderink. The brain a geometry engine , 1990, Psychological research.
[37] H. Mostafavi. Optimal window functions for image correlation in the presence of geometric distortion , 1979 .
[38] David G. Lowe,et al. Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[39] J. Hadamard. Sur les problemes aux derive espartielles et leur signification physique , 1902 .
[40] Matti Pietikäinen,et al. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[41] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[42] Lewis D. Griffin,et al. Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.
[43] Atsushi Imiya,et al. Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.
[44] Thomas Martin Deserno,et al. Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.
[45] Tony Lindeberg,et al. Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.
[46] Andrea J. van Doorn,et al. Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[47] Luc Florack,et al. On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.
[48] Max A. Viergever,et al. The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.
[49] Martin A. Fischler,et al. The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.
[50] Tony Lindeberg,et al. Generalized axiomatic scale-space theory , 2013 .
[51] Luc Florack,et al. Image Structure , 1997, Computational Imaging and Vision.
[52] Matthijs C. Dorst. Distinctive Image Features from Scale-Invariant Keypoints , 2011 .
[53] Lewis D. Griffin,et al. Symmetry Sensitivities of Derivative-of-Gaussian Filters , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[54] Lewis D. Griffin. Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.
[55] Andrea J. van Doorn,et al. Local Image Operators and Iconic Structure , 1997, AFPAC.
[56] Tony Lindeberg,et al. Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.
[57] Ronald M. Lesperance,et al. The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.
[58] Lewis D. Griffin. Basic Colors and Image Features , 2013 .
[59] Atsushi Imiya,et al. On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.
[60] Frédéric Jurie,et al. Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.
[61] Chong-Wah Ngo,et al. Towards optimal bag-of-features for object categorization and semantic video retrieval , 2007, CIVR '07.