The Atlas Structure of Images

Many operations of vision require image regions to be isolated and inter-related. This is challenging when they are different in detail and extent. Practical methods of Computer Vision approach this through the tools of downsampling, pyramids, cropping and patches. In this paper we develop an ideal geometric structure for this, compatible with the existing scale space model of image measurement. Its elements are apertures which view the image like fuzzy-edged portholes of frosted glass. We establish containment and cause/effect relations between apertures, and show that these link them into cross-scale atlases. Atlases formed of Gaussian apertures are shown to be a continuous version of the image pyramid used in Computer Vision, and allow various types of image description to naturally be expressed within their framework. We show that views through Gaussian apertures are approximately equivalent to the jets of derivative of Gaussian filter responses that form part of standard Scale Space theory. This supports a view of the simple cells of mammalian V1 as implementing a system of local views of the retinal image of varying extent and resolution. As a worked example we develop a keypoint descriptor scheme that outperforms previous schemes that do not make use of learning.

[1]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[2]  Lewis D. Griffin,et al.  Segmentation of phase contrast microscopy images based on multi-scale local Basic Image Features histograms , 2017, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[3]  Andrea J. van Doorn,et al.  The Structure of Locally Orderless Images , 1999, International Journal of Computer Vision.

[4]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[5]  Krystian Mikolajczyk,et al.  Learning local feature descriptors with triplets and shallow convolutional neural networks , 2016, BMVC.

[6]  Christian Heipke,et al.  INVARIANT DESCRIPTOR LEARNING USING A SIAMESE CONVOLUTIONAL NEURAL NETWORK , 2016 .

[7]  Benjamin B. Kimia,et al.  On the role of medial geometry in human vision , 2003, Journal of Physiology-Paris.

[8]  Andrea J. van Doorn,et al.  Image Processing Done Right , 2002, ECCV.

[9]  Igor S. Pandzic,et al.  Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion : Applications to Face Matching , Learning from Unlabeled Videos and 3 D-Shape Retrieval , 2016 .

[10]  Johan Wagemans,et al.  The nature of the visual field, a phenomenological analysis , 2015, Pattern Recognit. Lett..

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[13]  L. Debnath,et al.  On Hermite transform , 1964 .

[14]  Bin Fan,et al.  L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Premkumar Elangovan,et al.  Improved segmentation of meteorite micro-CT images using local histograms , 2012, Comput. Geosci..

[16]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Andrea Vedaldi,et al.  HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Hervé Jégou,et al.  Kernel Local Descriptors with Implicit Rotation Matching , 2015, ICMR.

[19]  Bram van Ginneken,et al.  Applications of Locally Orderless Images , 2000, J. Vis. Commun. Image Represent..

[20]  Marco Loog,et al.  The Jet Metric , 2007, SSVM.

[21]  Tony Lindeberg,et al.  A computational theory of visual receptive fields , 2013, Biological Cybernetics.

[22]  Lewis D. Griffin,et al.  Basic Image Features (BIFs) Arising from Approximate Symmetry Type , 2009, SSVM.

[23]  Tony Lindeberg,et al.  Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition , 2012, Comput. Vis. Image Underst..

[24]  S. Pillai,et al.  The Perron-Frobenius theorem: some of its applications , 2005, IEEE Signal Processing Magazine.

[25]  Roelfsema Pieter Cortical algorithms for perceptual grouping , 2008 .

[26]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[27]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[28]  Lewis D. Griffin Scale-imprecision space , 1997, Image and Vision Computing.

[29]  Lewis D. Griffin The Second Order Local-Image-Structure Solid , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Benoit Mory,et al.  Scale-Space Image Analysis Based on Hermite Polynomials Theory , 2003, International Journal of Computer Vision.

[31]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[32]  Tony Lindeberg,et al.  On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.

[33]  Tony Lindeberg,et al.  Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space , 2011, Journal of Mathematical Imaging and Vision.

[34]  Liliana Albertazzi,et al.  Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance , 2013 .

[35]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[36]  J. Koenderink The brain a geometry engine , 1990, Psychological research.

[37]  H. Mostafavi Optimal window functions for image correlation in the presence of geometric distortion , 1979 .

[38]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[39]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[40]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[42]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[43]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[44]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[45]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[46]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[48]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[49]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[50]  Tony Lindeberg,et al.  Generalized axiomatic scale-space theory , 2013 .

[51]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[52]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[53]  Lewis D. Griffin,et al.  Symmetry Sensitivities of Derivative-of-Gaussian Filters , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Lewis D. Griffin Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.

[55]  Andrea J. van Doorn,et al.  Local Image Operators and Iconic Structure , 1997, AFPAC.

[56]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[57]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.

[58]  Lewis D. Griffin Basic Colors and Image Features , 2013 .

[59]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[60]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[61]  Chong-Wah Ngo,et al.  Towards optimal bag-of-features for object categorization and semantic video retrieval , 2007, CIVR '07.