Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogues from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multiband deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalogue created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz = 0.007, which is a 60 per cent improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.

[1]  P. Schneider,et al.  KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data , 2018, Astronomy & Astrophysics.

[2]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[3]  Judith G. Cohen,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.

[4]  Kyler Kuehn,et al.  The Buzzard Flock: Dark Energy Survey Synthetic Sky Catalogs , 2019, 1901.02401.

[5]  M. Irwin,et al.  KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics , 2018, Astronomy & Astrophysics.

[6]  A R Walker,et al.  Cosmological Constraints from Multiple Probes in the Dark Energy Survey. , 2018, Physical review letters.

[7]  N Tonello,et al.  The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[9]  Kan Ren,et al.  Infrared small target detection using phase spectrum of quaternion fourier transform , 2018, Other Conferences.

[10]  David Alonso,et al.  The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.

[11]  G. Bernstein,et al.  Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  R. Wechsler,et al.  Approximating Photo-z PDFs for Large Surveys , 2018, The Astronomical Journal.

[13]  D. Gerdes,et al.  DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations , 2017, Monthly Notices of the Royal Astronomical Society.

[15]  S. Maddox,et al.  GAMA/H-ATLAS: the local dust mass function and cosmic density as a function of galaxy type – a benchmark for models of galaxy evolution , 2017, Monthly Notices of the Royal Astronomical Society.

[16]  H. Hoekstra,et al.  KiDS+2dFLenS+GAMA: testing the cosmological model with the EG statistic , 2017, Monthly Notices of the Royal Astronomical Society.

[17]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[18]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[19]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[20]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[21]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[22]  D. Gerdes,et al.  Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data , 2017, 1707.08256.

[23]  H. Hoekstra,et al.  KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys , 2017, 1707.04105.

[24]  R. Nichol,et al.  Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions , 2017, 1710.02517.

[25]  N. E. Sommer,et al.  Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization , 2017, 1709.00992.

[26]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[27]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[28]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[29]  Rachel Mandelbaum,et al.  Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.

[30]  D. Gruen,et al.  Selection biases in empirical p(z) methods for weak lensing , 2016, 1610.01160.

[31]  D. Kirk,et al.  Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering , 2016, 1607.07910.

[32]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[33]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[34]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[35]  J. Vicente,et al.  DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting , 2015, 1511.07623.

[36]  C. B. D'Andrea,et al.  No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.

[37]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[38]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[39]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[40]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[41]  André A. Costa,et al.  J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.

[42]  Francisco J. Castander,et al.  Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope , 2014, 1402.3220.

[43]  O. Lahav,et al.  CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields , 2013, 1308.0063.

[44]  Robert J. Brunner,et al.  SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.

[45]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[46]  T. Budavari,et al.  Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.

[47]  Davis,et al.  Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.

[48]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[49]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[50]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[51]  Gary M. Bernstein,et al.  Atmospheric Dispersion Effects in Weak Lensing Measurements , 2012, 1204.1346.

[52]  M. J. Way,et al.  Can Self-Organizing Maps Accurately Predict Photometric Redshifts? , 2012 .

[53]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[54]  James E. Geach,et al.  Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys , 2011, 1110.0005.

[55]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[56]  Simon J. Lilly,et al.  Photo‐z performance for precision cosmology , 2009, 0910.5735.

[57]  K. Honscheid,et al.  The Dark Energy Camera (DECam) , 2008, Astronomical Telescopes + Instrumentation.

[58]  F. Castander,et al.  The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey , 2008, 0806.3021.

[59]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[60]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[61]  S. Djorgovski,et al.  Deep Astrometric Standards , 2007, Proceedings of the International Astronomical Union.

[62]  A. Connolly,et al.  Using Galaxy Two-Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift , 2006, astro-ph/0606098.

[63]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[64]  G. Bernstein,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2005, astro-ph/0506030.

[65]  D. Huterer,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.

[66]  B. Flaugher The Dark Energy Survey , 2005 .

[67]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[68]  R. West,et al.  The automated classification of astronomical light curves using Kohonen self-organizing maps , 2004, astro-ph/0408118.

[69]  O. Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.

[70]  R. Bouwens,et al.  Faint Galaxies in Deep Advanced Camera for Surveys Observations , 2004 .

[71]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[72]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[73]  Petri Mähönen,et al.  Classifying Gamma-Ray Bursts using Self-organizing Maps , 2002 .

[74]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[75]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[76]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[77]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[78]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[79]  A. Naim,et al.  Galaxy Morphology without Classification: Self-organizing Maps , 1997, astro-ph/9704012.

[80]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[81]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .