Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
暂无分享,去创建一个
J. Frieman | F. Castander | P. Fosalba | A. Rosell | L. Costa | K. Honscheid | M. Maia | R. Ogando | E. Rykoff | F. Sobreira | M. Swanson | G. Bernstein | Peter Melchior | M. Kind | W. Hartley | J. Annis | J. DeRose | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | R. Wechsler | T. Abbott | S. Ávila | K. Bechtol | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | C. D'Andrea | S. Desai | P. Doel | A. Drlica-Wagner | T. Eifler | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | N. Kuropatkin | M. Lima | J. Marshall | F. Menanteau | R. Miquel | A. Plazas | A. Roodman | V. Scarpine | S. Serrano | M. Smith | E. Suchyta | G. Tarlé | M. Soares-Santos | J. Garc'ia-Bellido | M. March | E. Sánchez | H. Lin | D. Thomas | V. Vikram | M. Troxel | S. Bridle | D. Masters | J. Vicente | C. Davis | S. Allen | R. Cawthon | A. Alarcon | A. Choi | C. S'anchez | A. Amon | J. Myles | M. C. Kind | A. C. Rosell | R. Buchs | R. A. Gruend | A. Roodman | J. Marshall | H. Lin | H. Lin | M. Swanson | Risa Wechsler
[1] P. Schneider,et al. KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data , 2018, Astronomy & Astrophysics.
[2] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[3] Judith G. Cohen,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 , 2019, The Astrophysical Journal.
[4] Kyler Kuehn,et al. The Buzzard Flock: Dark Energy Survey Synthetic Sky Catalogs , 2019, 1901.02401.
[5] M. Irwin,et al. KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics , 2018, Astronomy & Astrophysics.
[6] A R Walker,et al. Cosmological Constraints from Multiple Probes in the Dark Energy Survey. , 2018, Physical review letters.
[7] N Tonello,et al. The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field , 2018, Monthly Notices of the Royal Astronomical Society.
[8] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[9] Kan Ren,et al. Infrared small target detection using phase spectrum of quaternion fourier transform , 2018, Other Conferences.
[10] David Alonso,et al. The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.
[11] G. Bernstein,et al. Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model , 2018, Monthly Notices of the Royal Astronomical Society.
[12] R. Wechsler,et al. Approximating Photo-z PDFs for Large Surveys , 2018, The Astronomical Journal.
[13] D. Gerdes,et al. DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys , 2018, Monthly Notices of the Royal Astronomical Society.
[14] D. Gerdes,et al. Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations , 2017, Monthly Notices of the Royal Astronomical Society.
[15] S. Maddox,et al. GAMA/H-ATLAS: the local dust mass function and cosmic density as a function of galaxy type – a benchmark for models of galaxy evolution , 2017, Monthly Notices of the Royal Astronomical Society.
[16] H. Hoekstra,et al. KiDS+2dFLenS+GAMA: testing the cosmological model with the EG statistic , 2017, Monthly Notices of the Royal Astronomical Society.
[17] Rachel Mandelbaum,et al. Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.
[18] C. B. D'Andrea,et al. Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.
[19] N. E. Sommer,et al. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.
[20] B. Yanny,et al. Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.
[21] R. Nichol,et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.
[22] D. Gerdes,et al. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data , 2017, 1707.08256.
[23] H. Hoekstra,et al. KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys , 2017, 1707.04105.
[24] R. Nichol,et al. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions , 2017, 1710.02517.
[25] N. E. Sommer,et al. Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization , 2017, 1709.00992.
[26] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[27] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[28] Erin S. Sheldon,et al. Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.
[29] Rachel Mandelbaum,et al. Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.
[30] D. Gruen,et al. Selection biases in empirical p(z) methods for weak lensing , 2016, 1610.01160.
[31] D. Kirk,et al. Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering , 2016, 1607.07910.
[32] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[33] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[34] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[35] J. Vicente,et al. DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting , 2015, 1511.07623.
[36] C. B. D'Andrea,et al. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.
[37] C. B. D'Andrea,et al. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.
[38] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[39] Edward J. Wollack,et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.
[40] Martin Kilbinger,et al. Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.
[41] André A. Costa,et al. J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.
[42] Francisco J. Castander,et al. Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope , 2014, 1402.3220.
[43] O. Lahav,et al. CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields , 2013, 1308.0063.
[44] Robert J. Brunner,et al. SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.
[45] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[46] T. Budavari,et al. Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.
[47] Davis,et al. Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.
[48] M. Sullivan,et al. The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.
[49] Edwin A. Valentijn,et al. The Kilo-Degree Survey , 2012, Experimental Astronomy.
[50] Y. Mellier,et al. UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.
[51] Gary M. Bernstein,et al. Atmospheric Dispersion Effects in Weak Lensing Measurements , 2012, 1204.1346.
[52] M. J. Way,et al. Can Self-Organizing Maps Accurately Predict Photometric Redshifts? , 2012 .
[53] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[54] James E. Geach,et al. Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys , 2011, 1110.0005.
[55] Alison L. Coil,et al. THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.
[56] Simon J. Lilly,et al. Photo‐z performance for precision cosmology , 2009, 0910.5735.
[57] K. Honscheid,et al. The Dark Energy Camera (DECam) , 2008, Astronomical Telescopes + Instrumentation.
[58] F. Castander,et al. The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey , 2008, 0806.3021.
[59] Jeffrey A. Newman,et al. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.
[60] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.
[61] S. Djorgovski,et al. Deep Astrometric Standards , 2007, Proceedings of the International Astronomical Union.
[62] A. Connolly,et al. Using Galaxy Two-Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift , 2006, astro-ph/0606098.
[63] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[64] G. Bernstein,et al. Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2005, astro-ph/0506030.
[65] D. Huterer,et al. Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.
[66] B. Flaugher. The Dark Energy Survey , 2005 .
[67] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[68] R. West,et al. The automated classification of astronomical light curves using Kohonen self-organizing maps , 2004, astro-ph/0408118.
[69] O. Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.
[70] R. Bouwens,et al. Faint Galaxies in Deep Advanced Camera for Surveys Observations , 2004 .
[71] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[72] S. Okamura,et al. Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.
[73] Petri Mähönen,et al. Classifying Gamma-Ray Bursts using Self-organizing Maps , 2002 .
[74] V. Narayanan,et al. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.
[75] Wayne Hu,et al. � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .
[76] Robert Lupton,et al. A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.
[77] L. Moscardini,et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.
[78] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[79] A. Naim,et al. Galaxy Morphology without Classification: Self-organizing Maps , 1997, astro-ph/9704012.
[80] T. Kohonen. Self-organized formation of topographically correct feature maps , 1982 .
[81] B. Tinsley,et al. The evolution of disk galaxies and the origin of S0 galaxies , 1980 .