On selecting thek largest with median tests

LetW itk(n) be the minimax complexity of selecting thek largest elements ofn numbersx 1,x 2,...,x n by pairwise comparisonsx i :x j . It is well known thatW 2(n) =n−2+ [lgn], andW k (n) = n + (k−1)lg n +O(1) for all fixed k ≥ 3. In this paper we studyW′ k (n), the minimax complexity of selecting thek largest, when tests of the form “Isx i the median of {x i ,x j ,x t }?” are also allowed. It is proved thatW′2(n) =n−2+ [lgn], andW′ k (n) =n + (k−1)lg2 n +O(1) for all fixedk≥3.

[1]  F. Yao ON LOWER BOUNDS FOR SELECTION PROBLEMS , 1974 .

[2]  Edward M. Reingold,et al.  Computing the Maximum and the Median , 1971, SWAT.

[3]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[4]  Laurent Hyafil Bounds for Selection , 1976, SIAM J. Comput..

[5]  Vaughan R. Pratt,et al.  On Lower Bounds for Computing the i-th Largest Element , 1973, SWAT.

[6]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[7]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[8]  Andrew Chi-Chih Yao,et al.  On the complexity of comparison problems using linear functions , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[9]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[10]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[11]  Michael O. Rabin,et al.  Proving Simultaneous Positivity of Linear Forms , 1972, J. Comput. Syst. Sci..

[12]  Harold N. Gabow,et al.  Using computer trees to derive lower bounds for selection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[13]  David Galer Kirkpatrick,et al.  Topics in the complexity of combinatorial algorithms. , 1974 .

[14]  Harold N. Gabow,et al.  A Counting Approach to Lower Bounds for Selection Problems , 1979, JACM.

[15]  Richard J. Lipton,et al.  A Lower Bound of ½n² on Linear Search Programs for the Knapsack Problem , 1976, MFCS.

[16]  DAVID DOBKIN,et al.  A Lower Bound of the ½n² on Linear Search Programs for the Knapsack Problem , 1978, J. Comput. Syst. Sci..