Bacterial RNA thermometers: molecular zippers and switches

Bacteria use complex strategies to coordinate temperature-dependent gene expression. Many genes encoding heat shock proteins and virulence factors are regulated by temperature-sensing RNA sequences, known as RNA thermometers (RNATs), in their mRNAs. For these genes, the 5′ untranslated region of the mRNA folds into a structure that blocks ribosome access at low temperatures. Increasing the temperature gradually shifts the equilibrium between the closed and open conformations towards the open structure in a zipper-like manner, thereby increasing the efficiency of translation initiation. Here, we review the known molecular principles of RNAT action and the hierarchical RNAT cascade in Escherichia coli. We also discuss RNA-based thermosensors located upstream of cold shock and other genes, translation of which preferentially occurs at low temperatures and which thus operate through a different, more switch-like mechanism. Finally, we consider the potential biotechnological applications of natural and synthetic RNATs.

[1]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[2]  H. Mori,et al.  Escherichia coli FtsH is a membrane‐bound, ATP‐dependent protease which degrades the heat‐shock transcription factor sigma 32. , 1995, The EMBO journal.

[3]  Premal Shah,et al.  Is Thermosensing Property of RNA Thermometers Unique? , 2010, PloS one.

[4]  Ryan T Fuchs,et al.  The SAM‐responsive SMK box is a reversible riboswitch , 2010, Molecular microbiology.

[5]  A. Nocker,et al.  ROSE elements occur in disparate rhizobia and are functionally interchangeable between species , 2001, Archives of Microbiology.

[6]  Beatrix Suess,et al.  Aptamers and riboswitches: perspectives in biotechnology , 2009, Applied Microbiology and Biotechnology.

[7]  F. Narberhaus Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs , 2010, RNA biology.

[8]  Torsten Waldminghaus,et al.  RNA thermometers. , 2006, FEMS microbiology reviews.

[9]  N. Freitag,et al.  Listeria monocytogenes — from saprophyte to intracellular pathogen , 2009, Nature Reviews Microbiology.

[10]  E. Laskowska,et al.  The Small Heat Shock Protein IbpA of Escherichia coli Cooperates with IbpB in Stabilization of Thermally Aggregated Proteins in a Disaggregation Competent State* , 2005, Journal of Biological Chemistry.

[11]  Y. Tse‐Dinh,et al.  Direct Interaction between Escherichia coli RNA Polymerase and the Zinc Ribbon Domains of DNA Topoisomerase I* , 2003, Journal of Biological Chemistry.

[12]  Eric Westhof,et al.  The Dynamic Landscapes of RNA Architecture , 2009, Cell.

[13]  J. Vogel,et al.  Regulatory RNA in bacterial pathogens. , 2010, Cell host & microbe.

[14]  F. Narberhaus,et al.  Microbial thermosensors , 2009, Cellular and Molecular Life Sciences.

[15]  H. Hennecke,et al.  A mRNA-based thermosensor controls expression of rhizobial heat shock genes. , 2001, Nucleic acids research.

[16]  G. Storz An RNA thermometer. , 1999, Genes & development.

[17]  F. Narberhaus,et al.  Molecular basis for temperature sensing by an RNA thermometer , 2006, The EMBO journal.

[18]  F. Fang,et al.  A 16.6-Kilodalton Protein in the Cyanobacterium Synechocystis sp. PCC 6803 Plays a Role in the Heat Shock Response , 1998, Current Microbiology.

[19]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[20]  G. Balogh,et al.  Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Buchner,et al.  The Small Heat-shock Protein IbpB from Escherichia coli Stabilizes Stress-denatured Proteins for Subsequent Refolding by a Multichaperone Network* , 1998, The Journal of Biological Chemistry.

[22]  H. Schwalbe,et al.  Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution , 2010, Nucleic acids research.

[23]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[24]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[25]  T. Henkin Riboswitch RNAs: using RNA to sense cellular metabolism. , 2008, Genes & development.

[26]  R. Breaker,et al.  Riboswitches as antibacterial drug targets , 2006, Nature Biotechnology.

[27]  M. Smit,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990 .

[28]  K. McCabe,et al.  LacI(Ts)-Regulated Expression as an In Situ Intracellular Biomolecular Thermometer , 2011, Applied and Environmental Microbiology.

[29]  M. Skurnik,et al.  LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis , 1992, Journal of bacteriology.

[30]  S. Altuvia,et al.  Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. , 1989, Journal of molecular biology.

[31]  L. Vigh,et al.  Cell biology: Stability in times of stress , 2010, Nature.

[32]  C. Buchrieser,et al.  A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes , 2009, Cell.

[33]  N. Kotov,et al.  Thermometer design at the nanoscale , 2007 .

[34]  G. Storz,et al.  Bacterial stress responses. , 2011 .

[35]  M. Inouye,et al.  Escherichia coli CspA-family RNA chaperones are transcription antiterminators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E. Vierling,et al.  A Mutant Small Heat Shock Protein with Increased Thylakoid Association Provides an Elevated Resistance Against UV-B Damage in Synechocystis 6803* , 2008, Journal of Biological Chemistry.

[37]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[38]  P. Cossart,et al.  Listeria monocytogenes: a multifaceted model , 2006, Nature Reviews Microbiology.

[39]  K. Tilly,et al.  Temperature-regulated expression of bacterial virulence genes. , 2000, Microbes and infection.

[40]  C. Gualerzi,et al.  The virF promoter in Shigella: more than just a curved DNA stretch , 2004, Molecular microbiology.

[41]  Torsten Waldminghaus,et al.  RNA thermometers are common in α- and γ-proteobacteria , 2005 .

[42]  M. Inouye,et al.  Mutation Analysis of the 5′ Untranslated Region of the Cold Shock cspA mRNA of Escherichia coli , 1999, Journal of bacteriology.

[43]  H. Wolf‐Watz,et al.  Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence , 2012, PLoS pathogens.

[44]  Torsten Waldminghaus,et al.  FourU: a novel type of RNA thermometer in Salmonella , 2007, Molecular microbiology.

[45]  M. Inouye,et al.  The role of the 5'-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation , 1996, Journal of bacteriology.

[46]  Ralph Bock,et al.  Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria , 2009, Nature Protocols.

[47]  E. Westhof,et al.  A pH-responsive riboregulator. , 2009, Genes & development.

[48]  C. Gualerzi,et al.  Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature‐dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H‐NS , 1998, The EMBO journal.

[49]  Jan van Duin,et al.  Control of Translation by mRNA Secondary Structure in Escherichia coli: A Quantitative Analysis of Literature Data , 1994 .

[50]  J. Gierse,et al.  Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli , 1992, Journal of bacteriology.

[51]  J. Slonczewski,et al.  Alkaline induction of a novel gene locus, alx, in Escherichia coli , 1990, Journal of bacteriology.

[52]  H. Yanagi,et al.  Heat-Induced Synthesis of ς32 inEscherichia coli: Structural and Functional Dissection ofrpoH mRNA Secondary Structure , 1999, Journal of bacteriology.

[53]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[54]  K. Severinov,et al.  RNA remodeling and gene regulation by cold shock proteins , 2010, RNA biology.

[55]  K. Klose,et al.  Regulation of virulence in Vibrio cholerae: the ToxR regulon. , 2007, Future microbiology.

[56]  Takashi Yura,et al.  Convergence of Molecular, Modeling, and Systems Approaches for an Understanding of the Escherichia coli Heat Shock Response , 2008, Microbiology and Molecular Biology Reviews.

[57]  M. Inouye,et al.  Role of the Cold-Box Region in the 5′ Untranslated Region of the cspA mRNA in Its Transient Expression at Low Temperature in Escherichia coli , 1998, Journal of bacteriology.

[58]  Carol A Gross,et al.  A chaperone network controls the heat shock response in E. coli. , 2004, Genes & development.

[59]  Emma Kreuger,et al.  Temperature-controlled Structural Alterations of an RNA Thermometer* , 2003, Journal of Biological Chemistry.

[60]  C. Gross,et al.  Cellular Response to Heat Shock and Cold Shock , 2011 .

[61]  K. Yamanaka,et al.  Cold shock response in Escherichia coli. , 1999, Journal of molecular microbiology and biotechnology.

[62]  Jörgen Johansson,et al.  RNAs: regulators of bacterial virulence , 2010, Nature Reviews Microbiology.

[63]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[64]  Torsten Waldminghaus,et al.  Generation of synthetic RNA-based thermosensors , 2008, Biological chemistry.

[65]  G. Balogh,et al.  Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a "fluidity gene". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Inouye,et al.  CspA, the Major Cold-shock Protein of Escherichia coli, Is an RNA Chaperone* , 1997, The Journal of Biological Chemistry.

[67]  J. Johansson RNA thermosensors in bacterial pathogens. , 2009, Contributions to microbiology.

[68]  I. Horváth,et al.  Small heat-shock proteins regulate membrane lipid polymorphism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Torsten Waldminghaus,et al.  Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers , 2007, Molecular Genetics and Genomics.

[70]  C. Gualerzi,et al.  The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. , 2010, Molecular cell.

[71]  G. Balogh,et al.  "Heat shock lipid" in cyanobacteria during heat/light-acclimation. , 2005, Archives of biochemistry and biophysics.

[72]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[73]  D. Lafontaine,et al.  Riboswitches: Ancient and Promising Genetic Regulators , 2009, Chembiochem : a European journal of chemical biology.

[74]  J. Greenblatt,et al.  The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. , 2000, Genes & development.

[75]  R. Breaker RNA switches out in the cold. , 2010, Molecular cell.

[76]  T. Alatossava,et al.  Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187 , 1985, Journal of bacteriology.

[77]  G. Rapoport,et al.  RheA, the repressor of hsp18 in Streptomyces albus G. , 1999, Microbiology.

[78]  Jan van Duin,et al.  Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. , 2003 .

[79]  Torsten Waldminghaus,et al.  Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. , 2011, Microbiology.

[80]  S. Phadtare Unwinding activity of cold shock proteins and RNA metabolism , 2011, RNA biology.

[81]  Maung Nyan Win,et al.  Frameworks for programming biological function through RNA parts and devices. , 2009, Chemistry & biology.

[82]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[83]  H. Schwalbe,et al.  Translation on demand by a simple RNA-based thermosensor , 2010, Nucleic acids research.

[84]  N. Hoe,et al.  Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated , 1993, Journal of bacteriology.

[85]  Harald Schwalbe,et al.  Modulation of the stability of the Salmonella fourU-type RNA thermometer , 2011, Nucleic acids research.

[86]  Markus Wieland,et al.  RNA quadruplex-based modulation of gene expression. , 2007, Chemistry & biology.

[87]  M. Inouye,et al.  The cold‐shock response — a hot topic , 1994, Molecular microbiology.

[88]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[89]  Juliane Neupert,et al.  Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli , 2008, Nucleic acids research.

[90]  Katherine E Deigan,et al.  Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. , 2011, Accounts of chemical research.

[91]  Torsten Waldminghaus,et al.  The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements , 2009, RNA biology.

[92]  John D. Lambris,et al.  Complement evasion by human pathogens , 2008, Nature Reviews Microbiology.

[93]  J. van Duin,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. Baker,et al.  The IbpA and IbpB small heat‐shock proteins are substrates of the AAA+ Lon protease , 2010, Molecular microbiology.