Active APPL1 sequestration by Plasmodium favors liver-stage development.

[1]  Jeremy D. DeBarry,et al.  VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center , 2021, Nucleic Acids Res..

[2]  T. Nozaki,et al.  Rab5b-Associated Arf1 GTPase Regulates Export of N-Myristoylated Adenylate Kinase 2 From the Endoplasmic Reticulum in Plasmodium falciparum , 2021, Frontiers in Cellular and Infection Microbiology.

[3]  M. Mota,et al.  Disrupting Plasmodium UIS3–host LC3 interaction with a small molecule causes parasite elimination from host cells , 2020, Communications biology.

[4]  M. Wilkerson,et al.  Torin 2 Derivative, NCATS-SM3710, Has Potent Multistage Antimalarial Activity through Inhibition of P. falciparum Phosphatidylinositol 4-Kinase (Pf PI4KIIIβ). , 2020, ACS pharmacology & translational science.

[5]  Adam J. Lewis,et al.  A Genome-wide CRISPR-Cas9 Screen Identifies Host Factors Essential for Optimal Plasmodium Liver Stage Development , 2020, bioRxiv.

[6]  V. Heussler,et al.  Hijacking of the host cell Golgi by Plasmodium liver stage parasites , 2020, bioRxiv.

[7]  Bin Zhang,et al.  mTOR activation due to APPL1 deficiency exacerbates hyperalgesia via Rab5/Akt and AMPK signaling pathway in streptozocin-induced diabetic rats , 2019, Molecular pain.

[8]  M. McNiven,et al.  The cell biology of the hepatocyte: A membrane trafficking machine , 2019, The Journal of cell biology.

[9]  Elizabeth K. K. Glennon,et al.  Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection. , 2019, Cell reports.

[10]  Y. Kalaidzidis,et al.  Retrograde transport of Akt by a neuronal Rab5-APPL1 endosome , 2018, Scientific Reports.

[11]  S. Gautam,et al.  A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms , 2018, The Journal of Biological Chemistry.

[12]  S. Dave,et al.  Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection , 2018, PLoS pathogens.

[13]  I. Coppens,et al.  The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network , 2017, The Journal of cell biology.

[14]  M. Mota,et al.  Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes , 2017, Nature Microbiology.

[15]  V. Heussler,et al.  Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of Plasmodium berghei , 2017, Scientific Reports.

[16]  P. Saftig,et al.  Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development , 2017, Molecular biology of the cell.

[17]  M. Mota,et al.  Plasmodium berghei EXP-1 interacts with host Apolipoprotein H during Plasmodium liver-stage development , 2017, Proceedings of the National Academy of Sciences.

[18]  N. Kanaan,et al.  Novel Non-phosphorylated Serine 9/21 GSK3β/α Antibodies: Expanding the Tools for Studying GSK3 Regulation , 2016, Front. Mol. Neurosci..

[19]  H. Tanke,et al.  Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole , 2016, PLoS pathogens.

[20]  Joseph Huff,et al.  The Fast mode for ZEISS LSM 880 with Airyscan: high-speed confocal imaging with super-resolution and improved signal-to-noise ratio , 2016, Nature Methods.

[21]  H. Staines,et al.  GLUT1‐mediated glucose uptake plays a crucial role during Plasmodium hepatic infection , 2016, Cellular microbiology.

[22]  S. Bhatia,et al.  Host AMPK Is a Modulator of Plasmodium Liver Infection , 2016, Cell reports.

[23]  M. Sakaguchi,et al.  Plasmodium Rab5b is secreted to the cytoplasmic face of the tubovesicular network in infected red blood cells together with N-acylated adenylate kinase 2 , 2016, Malaria Journal.

[24]  Mei Zhen,et al.  Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome , 2016, Neurophotonics.

[25]  Y. Kalaidzidis,et al.  Signal processing by the endosomal system. , 2016, Current opinion in cell biology.

[26]  Laura Cabrita-Santos,et al.  Host cell autophagy contributes to Plasmodium liver development , 2016, Cellular microbiology.

[27]  P. Casey,et al.  Protein prenylation: unique fats make their mark on biology , 2016, Nature Reviews Molecular Cell Biology.

[28]  M. Mota,et al.  A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium , 2016, Nature Communications.

[29]  Y. Kalaidzidis,et al.  APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments , 2015, The Journal of cell biology.

[30]  M. Machado,et al.  Application of the DNA-specific stain methyl green in the fluorescent labeling of embryos. , 2015, Journal of visualized experiments : JoVE.

[31]  S. Rahlfs,et al.  Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum , 2015, PloS one.

[32]  M. Mann,et al.  Regulation of liver metabolism by the endosomal GTPase Rab5. , 2015, Cell reports.

[33]  A. Shevchenko,et al.  Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection , 2014, Cell host & microbe.

[34]  Feng Dong,et al.  APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor , 2014, Cell reports.

[35]  K. Matuschewski,et al.  The Spatiotemporal Dynamics and Membranous Features of the Plasmodium Liver Stage Tubovesicular Network , 2014, Traffic.

[36]  A. Xu,et al.  Adiponectin Mediated APPL1‐AMPK Signaling Induces Cell Migration, MMP Activation, and Collagen Remodeling in Cardiac Fibroblasts , 2014, Journal of cellular biochemistry.

[37]  I. Coppens,et al.  Plasmodium falciparum Rab5B Is an N-Terminally Myristoylated Rab GTPase That Is Targeted to the Parasite's Plasma and Food Vacuole Membranes , 2014, PloS one.

[38]  K. Kuhen,et al.  Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria , 2013, Nature.

[39]  M. Mota,et al.  Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins , 2013, Proceedings of the National Academy of Sciences.

[40]  A. S. Ye,et al.  Suppression of host p53 is critical for Plasmodium liver-stage infection. , 2013, Cell reports.

[41]  S. Elledge,et al.  Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. , 2013, Cancer research.

[42]  D. James,et al.  Membrane Curvature Protein Exhibits Interdomain Flexibility and Binds a Small GTPase* , 2012, The Journal of Biological Chemistry.

[43]  Laura Cabrita-Santos,et al.  The Host Endocytic Pathway is Essential for Plasmodium berghei Late Liver Stage Development , 2012, Traffic.

[44]  Daryl R. Kipke,et al.  Whole Animal Perfusion Fixation for Rodents , 2012, Journal of visualized experiments : JoVE.

[45]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[46]  A. Holder,et al.  Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development , 2012, PloS one.

[47]  V. Heussler,et al.  Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development , 2012, Cellular microbiology.

[48]  P. De Camilli,et al.  Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling , 2012, Molecular biology of the cell.

[49]  M. Sajid,et al.  A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites , 2011, PloS one.

[50]  I. Coppens,et al.  Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver , 2011, Cellular microbiology.

[51]  T. Kutateladze,et al.  Translation of the phosphoinositide code by PI effectors. , 2010, Nature chemical biology.

[52]  P. Várnai,et al.  Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling , 2010, Proceedings of the National Academy of Sciences.

[53]  A. Sinz Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry , 2010, Analytical and bioanalytical chemistry.

[54]  J. Testa,et al.  Appl1 Is Dispensable for Mouse Development, and Loss of Appl1 Has Growth Factor-selective Effects on Akt Signaling in Murine Embryonic Fibroblasts* , 2009, The Journal of Biological Chemistry.

[55]  G. Cottrell,et al.  Endosomes: A legitimate platform for the signaling train , 2009, Proceedings of the National Academy of Sciences.

[56]  B. Pyrzyńska,et al.  Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex , 2009, The Biochemical journal.

[57]  J. M. Torres,et al.  Adiponectin Activates AMP-activated Protein Kinase in Muscle Cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/Calmodulin-dependent Protein Kinase Kinase-dependent Pathways* , 2009, The Journal of Biological Chemistry.

[58]  Sajid Rashid,et al.  Endosomal Adaptor Proteins APPL1 and APPL2 Are Novel Activators of β-Catenin/TCF-mediated Transcription* , 2009, The Journal of Biological Chemistry.

[59]  D. Toomre,et al.  A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes , 2009, Cell.

[60]  C. Collinet,et al.  The Endosomal Protein Appl1 Mediates Akt Substrate Specificity and Cell Survival in Vertebrate Development , 2008, Cell.

[61]  D. Kalman,et al.  RNAi Screen Reveals an Abl Kinase-Dependent Host Cell Pathway Involved in Pseudomonas aeruginosa Internalization , 2008, PLoS pathogens.

[62]  M. Scidmore,et al.  Manipulation of Rab GTPase Function by Intracellular Bacterial Pathogens , 2007, Microbiology and Molecular Biology Reviews.

[63]  Yang Shen,et al.  The carboxyl‐terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3‐kinase , 2007, Cellular microbiology.

[64]  I. Coppens,et al.  Cellular interactions of Plasmodium liver stage with its host mammalian cell. , 2007, International journal for parasitology.

[65]  P. De Camilli,et al.  A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. , 2007, Developmental cell.

[66]  D. Carling,et al.  Adiponectin-Induced Endothelial Nitric Oxide Synthase Activation and Nitric Oxide Production Are Mediated by APPL1 in Endothelial Cells , 2007, Diabetes.

[67]  Feng Liu,et al.  APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function , 2006, Nature Cell Biology.

[68]  F. Deleuil,et al.  Interaction between the Yersinia Tyrosine Phosphatase YopH and Its Macrophage Substrate, Fyn-Binding Protein, Fyb , 2006, Journal of Molecular Microbiology and Biotechnology.

[69]  C. Libert,et al.  The liver stage of Plasmodium berghei inhibits host cell apoptosis , 2005, Molecular microbiology.

[70]  Ana Rodriguez,et al.  HGF/MET signalling protects Plasmodium‐infected host cells from apoptosis , 2005, Cellular microbiology.

[71]  Melanie Rug,et al.  Targeting Malaria Virulence and Remodeling Proteins to the Host Erythrocyte , 2004, Science.

[72]  Travis Harrison,et al.  A Host-Targeting Signal in Virulence Proteins Reveals a Secretome in Malarial Infection , 2004, Science.

[73]  Barbara Kappes,et al.  Export of Plasmodium falciparum calcium‐dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N‐terminal membrane anchor motifs , 2004, Molecular microbiology.

[74]  J. Boyer,et al.  The maintenance and generation of membrane polarity in hepatocytes , 2004, Hepatology.

[75]  Bianca Habermann,et al.  APPL Proteins Link Rab5 to Nuclear Signal Transduction via an Endosomal Compartment , 2004, Cell.

[76]  Emmanuel Quevillon,et al.  The Plasmodium falciparum family of Rab GTPases. , 2003, Gene.

[77]  A. Nakano,et al.  Ara6, a plant‐unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana , 2001, The EMBO journal.

[78]  Mark C. Field,et al.  Acylation-dependent Protein Export inLeishmania * , 2000, The Journal of Biological Chemistry.

[79]  G. Langsley,et al.  Rab GTPases and the unusual secretory pathway of plasmodium. , 1997, Parasitology today.

[80]  J. Brunzelle,et al.  Breathing Easier , 1996, Environmental Health Perspectives.

[81]  M. Zerial,et al.  Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Zerial,et al.  Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. , 1994, The EMBO journal.

[83]  M. Hollingdale,et al.  In vitro infectivity of irradiated Plasmodium berghei sporozoites to cultured hepatoma cells. , 1984, The American journal of tropical medicine and hygiene.

[84]  Nicola G. Jones,et al.  3D subcellular localization with superresolution array tomography on ultrathin sections of various species. , 2017, Methods in cell biology.

[85]  D. Sabatini,et al.  Development of ATP-competitive mTOR inhibitors. , 2012, Methods in molecular biology.

[86]  A. Ciliberto,et al.  Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. , 2012, Physiological reviews.

[87]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[88]  M. Tsuji,et al.  Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites , 2004, Parasitology Research.