Individual tree segmentation and species classification using high-density close-range multispectral laser scanning data

[1]  Xiufen Li,et al.  Individual Tree Segmentation and Tree Height Estimation Using Leaf-Off and Leaf-On UAV-LiDAR Data in Dense Deciduous Forests , 2022, Remote. Sens..

[2]  J. Hyyppä,et al.  Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system , 2022, Science of Remote Sensing.

[3]  Håkan Olsson,et al.  Classification of tree species classes in a hemi-boreal forest from multispectral airborne laser scanning data using a mini raster cell method , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Jacek Rapinski,et al.  A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers , 2021, Remote. Sens..

[5]  P. Litkey,et al.  A Long-Term Terrestrial Laser Scanning Measurement Station to Continuously Monitor Structural and Phenological Dynamics of Boreal Forest Canopy , 2021, Frontiers in Plant Science.

[6]  Nicholas C. Coops,et al.  lidR: An R package for analysis of Airborne Laser Scanning (ALS) data , 2020 .

[7]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[8]  Juha Hyyppä,et al.  Under-canopy UAV laser scanning for accurate forest field measurements , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[9]  Juha Hyyppä,et al.  Accurate derivation of stem curve and volume using backpack mobile laser scanning , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[10]  M. Maltamo,et al.  Comparison of multispectral airborne laser scanning and stereo matching of aerial images as a single sensor solution to forest inventories by tree species , 2019, Remote Sensing of Environment.

[11]  Petteri Packalen,et al.  Multispectral Airborne LiDAR Data in the Prediction of Boreal Tree Species Composition , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Arvid Axelsson,et al.  Exploring Multispectral ALS Data for Tree Species Classification , 2018, Remote. Sens..

[13]  Miroslav Svoboda,et al.  Forest disturbances under climate change. , 2017, Nature climate change.

[14]  Juha Hyyppä,et al.  Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning , 2017, Remote. Sens..

[15]  Laura S. Kenefic,et al.  Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds , 2017 .

[16]  Michael A. Lefsky,et al.  Review of studies on tree species classification from remotely sensed data , 2016 .

[17]  Kristina Koenig,et al.  Full-Waveform Airborne Laser Scanning in Vegetation Studies—A Review of Point Cloud and Waveform Features for Tree Species Classification , 2016 .

[18]  C. Silva,et al.  Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data , 2016 .

[19]  Michele Dalponte,et al.  Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data , 2016, Methods in ecology and evolution.

[20]  Jouko Lampinen,et al.  Object Classification and Recognition From Mobile Laser Scanning Point Clouds in a Road Environment , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[21]  V. Wichmann,et al.  EVALUATING THE POTENTIAL OF MULTISPECTRAL AIRBORNE LIDAR FOR TOPOGRAPHIC MAPPING AND LAND COVER CLASSIFICATION , 2015 .

[22]  Henrik Andrén,et al.  Higher levels of multiple ecosystem services are found in forests with more tree species , 2013, Nature Communications.

[23]  Michael G. Wing,et al.  Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements , 2011, Remote. Sens..

[24]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[25]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[26]  J. Hyyppä,et al.  Change Detection Techniques for Canopy Height Growth Measurements Using Airborne Laser Scanner Data , 2006 .

[27]  K. Mengersen,et al.  Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species , 2005 .

[28]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[29]  Tomas Brandtberg Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America , 2003 .

[30]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[31]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[32]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  L. Finér,et al.  What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? , 2021 .

[34]  Perpetual Hope Akwensi,et al.  An Individual Tree Segmentation Method Based on Watershed Algorithm and Three-Dimensional Spatial Distribution Analysis From Airborne LiDAR Point Clouds , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  M. Vastaranta,et al.  Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .

[36]  J. Hyyppä,et al.  Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type , 2010 .

[37]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[38]  Tomas Brandtberg Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar , 2007 .

[39]  Juha Hyyppä,et al.  DECIDUOUS-CONIFEROUS TREE CLASSIFICATION USING DIFFERENCE BETWEEN FIRST AND LAST PULSE LASER SIGNATURES , 2007 .

[40]  Qi Chen Airborne Lidar Data Processing and Information Extraction , 2007 .

[41]  Dale L. Bartos,et al.  Aspen Ecosystems: Objectives for Sustaining Biodiversity , 2001 .