Structural characterization of antifungal CaZn2(OH)6·2H2O nanoparticles obtained via mechanochemical processing

[1]  A. Sierra-Fernandez,et al.  Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico , 2018, Environmental Earth Sciences.

[2]  L. S. Gomez-Villalba,et al.  Inorganic Nanomaterials for the Consolidation and Antifungal Protection of Stone Heritage , 2018 .

[3]  F. Marmottini,et al.  Effects of different milling techniques on the layered double hydroxides final properties , 2018 .

[4]  L. Partida-Martínez,et al.  Interactions between abundant fungal species influence the fungal community assemblage on limestone , 2017, PloS one.

[5]  S. Ruffolo,et al.  Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces , 2017 .

[6]  F. Villa,et al.  Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb , 2017 .

[7]  R. Zăvoianu,et al.  Mechanochemical versus co-precipitated synthesized lanthanum-doped layered materials for olefin oxidation , 2017 .

[8]  R. Fort,et al.  Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage. , 2017, ACS applied materials & interfaces.

[9]  Xinzhong Liu,et al.  Precursor preparation of Zn–Al layered double hydroxide by ball milling for enhancing adsorption and photocatalytic decoloration of methyl orange , 2017 .

[10]  Xinzhong Liu,et al.  A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide , 2017 .

[11]  S. R. Pombeiro-Sponchiado,et al.  Production of Melanin Pigment by Fungi and Its Biotechnological Applications , 2017 .

[12]  F. Tavangarian,et al.  Rapid preparation of nano hexagonal-shaped hydrocalumite via one-pot mechanochemistry method , 2017 .

[13]  G. Scholz,et al.  Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides , 2016 .

[14]  O. Ortega-Morales,et al.  Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico , 2016 .

[15]  I. Ahmad,et al.  Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles , 2016, PloS one.

[16]  B. Ortega-Morales,et al.  Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings , 2016, Front. Microbiol..

[17]  Shaoxian Song,et al.  Mechanochemical approaches to synthesize layered double hydroxides: a review , 2016 .

[18]  Maria Chiara Sportelli,et al.  Development of a novel conservation treatment of stone monuments with bioactive nanocomposites , 2015, Heritage Science.

[19]  L. Sabbatini,et al.  Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks , 2015 .

[20]  B. Chattopadhyay,et al.  Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology , 2015 .

[21]  Katarzyna Turnau,et al.  Antifungal properties of silver nanoparticles against indoor mould growth. , 2015, The Science of the total environment.

[22]  G. Gadd,et al.  Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation , 2014 .

[23]  Li Zhang,et al.  Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide , 2014 .

[24]  G. Oskam,et al.  Antifungal activity of Ca[Zn(OH)3]2·2H2O coatings for the preservation of limestone monuments: An in vitro study , 2014 .

[25]  L. Shi,et al.  Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review , 2014, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[26]  Jinghao Hao,et al.  A Facile Route for the Preparation of Calcium Zincate and its Application in Ni–Zn Batteries , 2014 .

[27]  Christine C. Gaylarde,et al.  Inhibition of Cladosporium growth on gypsum panels treated with nanosilver particles , 2013 .

[28]  A. Bortoluzzi,et al.  Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin , 2013 .

[29]  G. Oskam,et al.  Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments. , 2013, ACS applied materials & interfaces.

[30]  P. Espitia,et al.  Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms , 2013, Journal of Nanoparticle Research.

[31]  C. Gaylarde,et al.  Succession of fungi colonizing porous and compact limestone exposed to subtropical environments. , 2012, Fungal biology.

[32]  T. Tolaymat,et al.  The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. , 2012, The Science of the total environment.

[33]  Gino Mirocle Crisci,et al.  Multifunctional TiO2 coatings for Cultural Heritage , 2012 .

[34]  A. A. Abdul Majeed,et al.  Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles. , 2012, Chemical & pharmaceutical bulletin.

[35]  C. Gaylarde,et al.  Influence of fungi in the weathering of limestone of Mayan monuments , 2011 .

[36]  K. Wilkinson,et al.  Diffusion of nanoparticles in a biofilm. , 2011, Environmental science & technology.

[37]  Ali Moballegh,et al.  ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[38]  E. Longo,et al.  A new processing method of CaZn2(OH)6·2H2O powders: Photoluminescence and growth mechanism , 2009 .

[39]  R. Moreno-Tost,et al.  Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions , 2009 .

[40]  W. Chien,et al.  Synthesis and characterization of nano-sized calcium zincate powder and its application to Ni–Zn batteries , 2009 .

[41]  Zhan-hong Yang,et al.  Study of calcium zincate synthesized by solid-phase synthesis method without strong alkali , 2008 .

[42]  Raimondo Quaresima,et al.  The nanolimes in Cultural Heritage conservation: Characterisation and analysis of the carbonatation process , 2008 .

[43]  K. Feris,et al.  Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. , 2007, Applied physics letters.

[44]  Geoffrey M Gadd,et al.  Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. , 2007, Mycological research.

[45]  Piero Baglioni,et al.  Soft and hard nanomaterials for restoration and conservation of cultural heritage. , 2006, Soft matter.

[46]  Xiaodan Wang,et al.  Calcium Zincate Synthesized by Ballmilling as a Negative Material for Secondary Alkaline Batteries , 2004 .

[47]  Hanxi Yang,et al.  Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials , 2003 .

[48]  V. Boldyrev Hydrothermal reactions under mechanochemical action , 2002 .

[49]  M. Senna,et al.  Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies , 2001 .

[50]  N. Kosova Hydrothermal reactions under mechanochemical treating , 1997 .

[51]  D. Cocke,et al.  Synthesis and Characterization of Calcium Hydroxyzincate Using X-ray Diffraction, FT-IR Spectroscopy, and Scanning Force Microscopy , 1995 .

[52]  M. Senna Incipient chemical interaction between fine particles under mechanical stress - a feasibility of producing advanced materials via mechanochemical routes , 1993 .

[53]  Ram A. Sharma Physico‐Chemical Properties of Calcium Zincate , 1986 .