Throughput Analysis of Decentralized Coded Content Caching in Cellular Networks

Decentralized coded content caching for next generation cellular networks is studied. The contents are linearly combined and cached in under-utilized caches of user terminals and its throughput capacity is compared with decentralized uncoded content caching. In both scenarios, we consider multihop device-to-device communications and the use of femtocaches in the network. It is shown that decentralized coded content caching can increase the network throughput capacity compared to decentralized uncoded caching by reducing the number of hops needed to deliver the desired content. Furthermore, the throughput capacity for Zipfian content request distribution is computed and it is shown that the decentralized coded content cache placement can increase the throughput capacity of cellular networks by a factor of <inline-formula> <tex-math notation="LaTeX">$(\log (n))^{2}$ </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is the number of nodes served by a femtocache.

[1]  Urs Niesen,et al.  Coded Caching With Nonuniform Demands , 2017, IEEE Transactions on Information Theory.

[2]  43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings , 2002, FOCS.

[3]  Robert W. Heath,et al.  Five disruptive technology directions for 5G , 2013, IEEE Communications Magazine.

[4]  Zhi Chen Fundamental Limits of Caching: Improved Bounds For Small Buffer Users , 2014, ArXiv.

[5]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[6]  M. Penrose The longest edge of the random minimal spanning tree , 1997 .

[7]  Alexandros G. Dimakis,et al.  FemtoCaching: Wireless Content Delivery Through Distributed Caching Helpers , 2013, IEEE Transactions on Information Theory.

[8]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[9]  Alexandros G. Dimakis,et al.  FemtoCaching: Wireless video content delivery through distributed caching helpers , 2011, 2012 Proceedings IEEE INFOCOM.

[10]  Suhas N. Diggavi,et al.  Multi-level coded caching , 2014, 2014 IEEE International Symposium on Information Theory.

[11]  Giuseppe Caire,et al.  Wireless Multihop Device-to-Device Caching Networks , 2017, IEEE Trans. Inf. Theory.

[12]  Panganamala Ramana Kumar,et al.  Scaling Laws for Ad Hoc Wireless Networks: An Information Theoretic Approach , 2006, Found. Trends Netw..

[13]  P. Viswanath,et al.  A deterministic approach to throughput scaling in wireless networks , 2002, Proceedings IEEE International Symposium on Information Theory,.

[14]  CachingLee,et al.  On the Implications of Zipf ' s Law for Web , 1998 .

[15]  Zhi Chen,et al.  Fundamental limits of caching: improved bounds for users with small buffers , 2016, IET Commun..

[16]  Alexandros G. Dimakis,et al.  Index Coding With Coded Side-Information , 2015, IEEE Communications Letters.

[17]  Li Fan,et al.  Web caching and Zipf-like distributions: evidence and implications , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[18]  Hamid R. Sadjadpour,et al.  Effect of Social Groups on the Capacity of Wireless Networks , 2016, IEEE Transactions on Wireless Communications.

[19]  Urs Niesen,et al.  Fundamental Limits of Caching , 2014, IEEE Trans. Inf. Theory.

[20]  Suhas N. Diggavi,et al.  Hierarchical coded caching , 2014, 2014 IEEE International Symposium on Information Theory.

[21]  Giuseppe Caire,et al.  Wireless Multihop Device-to-Device Caching Networks , 2015, IEEE Trans. Inf. Theory.

[22]  Urs Niesen,et al.  Decentralized coded caching attains order-optimal memory-rate tradeoff , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Giuseppe Caire,et al.  Wireless Device-to-Device Caching Networks: Basic Principles and System Performance , 2013, IEEE Journal on Selected Areas in Communications.

[24]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[25]  Hamid R. Sadjadpour,et al.  Capacity of cellular networks with femtocache , 2016, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[26]  Urs Niesen,et al.  Online coded caching , 2014, ICC.

[27]  Hamid R. Sadjadpour,et al.  Multihop Caching-Aided Coded Multicasting for the Next Generation of Cellular Networks , 2014, IEEE Transactions on Vehicular Technology.

[28]  Lujain Dabouba,et al.  Millimeter Wave Mobile Communication for 5 G Cellular , 2017 .

[29]  Giuseppe Caire,et al.  Fundamental limits of distributed caching in D2D wireless networks , 2013, 2013 IEEE Information Theory Workshop (ITW).

[30]  P. Erd6s ON A CLASSICAL PROBLEM OF PROBABILITY THEORY b , 2001 .

[31]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[32]  Giuseppe Caire,et al.  Fundamental Limits of Caching in Wireless D2D Networks , 2014, IEEE Transactions on Information Theory.