Evidence of a metal-rich surface for the asteroid (16) Psyche from interferometric observations in the thermal infrared

Abstract We describe the first determination of thermal properties and size of the M-type Asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We used a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (Kaasalainen, M., Torppa, J., Piironen, J. [2002]. Icarus 159, 369–395), we derived a volume-equivalent diameter for (16) Psyche of 247 ± 25 km or 238 ± 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J m −2  s −0.5  K −1 , with a total uncertainty estimated at 40 J m −2  s −0.5  K −1 . They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the Asteroid (16) Psyche.

[1]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[2]  T. G. Muller,et al.  Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .

[3]  Mikko Kaasalainen,et al.  DAMIT: a database of asteroid models , 2010 .

[4]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[5]  A. Harris,et al.  Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations , 2009, 0908.4198.

[6]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[7]  Bradford A. Smith,et al.  Reflectance spectrophotometry (∼0.5–1.0 μm) of outer-belt asteroids: Implications for primitive, organic solar system material , 1985 .

[8]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[9]  Joel W. Barlow,et al.  The Prediction of the Emissivity and Thermal Conductivity of Powder Beds , 2004 .

[10]  Benoit Carry,et al.  A Service of Position and Physical Ephemerides Computation Dedicated to the Small Bodies of the Solar System , 2008 .

[11]  Jesse D. Bregman,et al.  Spectral Irradiance Calibration in the Infrared , 2011 .

[12]  T. Mueller,et al.  Thermal properties of (4) Vesta derived from Herschel measurements , 2012 .

[13]  Munetaka Ueno,et al.  Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey , 2011 .

[14]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[15]  M. Birlan,et al.  New determination of the size and bulk density of the binary Asteroid 22 Kalliope from observations of mutual eclipses , 2007, 0710.1471.

[16]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[17]  J. Christou,et al.  Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres , 2008 .

[18]  B. Macomber,et al.  Triplicity and physical characteristics of Asteroid (216) Kleopatra , 2010, 1011.5263.

[19]  M. Kaasalainen,et al.  Models of Twenty Asteroids from Photometric Data , 2002 .

[20]  R. Ragazzoni,et al.  Speckle interferometry observations of asteroids at tng , 2003 .

[21]  M. Freeman,et al.  Summary and Synthesis , 2011 .

[22]  Uwe Graser,et al.  MIDI, the 10 μm interferometer of the VLT , 2001 .

[23]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[24]  I. Shapiro,et al.  Mainbelt Asteroids: Dual-Polarization Radar Observations , 1985, Science.

[25]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[26]  Paolo Tanga,et al.  Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.

[27]  Sebastiano Ligori,et al.  FIRST VLTI-MIDI DIRECT DETERMINATIONS OF ASTEROID SIZES , 2009 .

[28]  A. Harris,et al.  Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations , 2012 .

[29]  A. Kovačević,et al.  Motion of the asteroid (13206) 1997GC22 and the mass of (16) Psyche , 2002 .

[30]  Walter Jaffe Coherent fringe tracking and visibility estimation for MIDI , 2004, SPIE Astronomical Telescopes + Instrumentation.

[31]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[32]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[33]  Directional variations in thermal emission from geologic surfaces , 1990 .

[34]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[35]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[36]  Sebastiano Ligori,et al.  Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared , 2011, 1108.2616.

[37]  Michael Mueller,et al.  Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling , 2007, 1208.3993.

[38]  D. Lupishko,et al.  On the bulk density of the M-type asteroid 16 Psyche , 2006 .

[39]  Paul A. Abell,et al.  Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids , 2005 .

[40]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids II. Summary and synthesis , 2010 .

[41]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[42]  Michael J. Gaffey,et al.  Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy , 1990 .

[43]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[44]  N. Izenberg,et al.  Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith , 2001, Science.

[45]  B. Viateau Mass and density of asteroids (16) Psyche and (121) Hermione , 2000 .

[46]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids , 2008 .

[47]  T. Blommaert 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis , 2004, astro-ph/0401458.

[48]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[49]  M. Kaasalainen,et al.  Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes , 2011, 1104.4227.

[50]  B. Altieri,et al.  Thermal and shape properties of asteroid (21) Lutetia from Herschel observations around the Rosetta flyby , 2012 .

[51]  B. Clark,et al.  Spectroscopic survey of M-type asteroids , 2010, 1007.2582.

[52]  D. Britt,et al.  3-μm Spectrophotometric Survey of M- and E-Class Asteroids , 1995 .

[53]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[54]  Benoît Carry Etude des propriétés physiques des astéroîdes par imagerie à haute résolution angulaire , 2009 .

[55]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[56]  Sebastiano Ligori,et al.  Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI , 2004 .

[57]  J. Enriquez,et al.  Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations , 2012, 1604.05384.

[58]  J. Blommaert,et al.  65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis , 2004, astro-ph/0401458.

[59]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[60]  M. Kaasalainen,et al.  Thermal properties of asteroid 21 Lutetia from Spitzer Space Telescope observations , 2010 .

[61]  O. Chesneau MIDI: Obtaining and analysing interferometric data in the mid-infrared , 2007 .

[62]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[63]  N. Izenberg,et al.  The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros , 2001, Nature.