Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems
暂无分享,去创建一个
[1] Pham Hoang Quan,et al. A Nonlinear Case of the 1-D Backward Heat Problem: Regularization and Error Estimate , 2007 .
[2] Radu Precup,et al. Methods in Nonlinear Integral Equations , 2002 .
[3] Seth F. Oppenheimer,et al. Quasireversibility Methods for Non-Well-Posed Problems , 1994 .
[4] Dang Duc Trong,et al. A two-dimensional backward heat problem with statistical discrete data , 2016, 1606.05463.
[5] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[6] Michael Metcalf,et al. Modern Fortran Explained , 2011, Oxford Scholarship Online.
[7] Huy Tuan Nguyen,et al. REGULARIZATION AND ERROR ESTIMATES FOR NONHOMOGENEOUS BACKWARD HEAT PROBLEMS , 2006 .
[8] R. Temam,et al. Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .
[9] Jun-Sheng Duan. Time- and space-fractional partial differential equations , 2005 .
[10] Robert Lattès,et al. Méthode de quasi-réversibilbilité et applications , 1967 .
[11] Le Minh Triet,et al. On a backward nonlinear parabolic equation with time and space dependent thermal conductivity: Regularization and error estimates , 2014 .
[12] Ralph E. Showalter,et al. The final value problem for evolution equations , 1974 .
[13] D. Hào,et al. Stability estimates for Burgers-type equations backward in time , 2015 .
[14] Dang Duc Trong,et al. On a backward parabolic problem with local Lipschitz source , 2014 .
[15] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[16] P. H. Quan,et al. A backward nonlinear heat equation: regularization with error estimates , 2005 .
[17] D. D. Trong,et al. A nonlinearly backward heat problem: uniqueness, regularization and error estimate , 2006 .
[18] George Marsaglia,et al. The 64-bit universal RNG , 2004 .
[19] A. Carasso,et al. Computing Small Solutions of Burgers' Equation Backwards in Time* , 1977 .
[20] Bui Thanh Duy,et al. Backward heat equations with locally lipschitz source , 2015 .