The dynamics of coarsening in highly anisotropic systems: Si particles in Al–Si liquids

Abstract The coarsening process of an Al–29.9wt%Si alloy is studied using four-dimensional phase contrast X-ray tomography. This alloy is composed of highly anisotropic, primary Si particles in an eutectic matrix. We analyze the morphology of the primary Si particles during coarsening by determining the interface normal distribution and the interface shape distribution. The inverse surface area per unit volume increases with the cube root of time despite the lack of microstructural self-similarity and highly anisotropic particle morphology. More specifically, over the time frame of the experiments, the Si particles evolve from mostly faceted domains to a more isotropic structure that is not given by the Wulff shape of the crystal. These trends can be rationalized by the presence of twin defects that intersect particle edges and that may provide the kink sites necessary for interfacial propagation, thus leading to a more isotropic structure. While in many cases the interfacial velocity of Si solid–liquid interfaces is highly anisotropic, the presence of many defects leads to a highly mobile interface and diffusion-limited coarsening.

[1]  P. Voorhees,et al.  The dynamics of interfaces during coarsening in solid–liquid systems , 2014 .

[2]  A. Hellawell,et al.  The microstructure and crystallography of aluminium—silicon eutectic alloys , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Ashwin J Shahani,et al.  Integrated approach to the data processing of four-dimensional datasets from phase-contrast x-ray tomography. , 2014, Optics express.

[4]  R. Wagner On the growth of germanium dendrites , 1960 .

[5]  Alexis Miroux,et al.  Formation of Microstructure in Al-Si Alloys Under Ultrasonic Melt Treatment , 2012 .

[6]  P. Voorhees,et al.  Self-similar microstructural evolution of dendritic solid–liquid mixtures during coarsening , 2009 .

[7]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  D. Kashchiev,et al.  Unified description of the rate of nucleation-mediated crystal growth , 1989 .

[9]  H. Schaeben,et al.  Texture Analysis with MTEX – Free and Open Source Software Toolbox , 2010 .

[10]  P. Voorhees,et al.  The morphological evolution of equiaxed dendritic microstructures during coarsening , 2009 .

[11]  Jean E. Taylor,et al.  Modeling crystal growth in a diffusion field using fully faceted interfaces , 1994 .

[12]  K. A. Jackson,et al.  Monte Carlo modeling of silicon crystal growth , 2000 .

[13]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[14]  P. Voorhees,et al.  Four-Dimensional Morphological Evolution of an Aluminum Silicon Alloy Using Propagation-Based Phase Contrast X-ray Tomographic Microscopy , 2014 .

[15]  A. F. Bakker,et al.  Molecular Dynamics Simulations of Steps at Crystal Surfaces. , 1990 .

[16]  R. Sekerka Theory of Crystal Growth Morphology , 2004 .

[17]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[18]  K. Fujiwara,et al.  Formation mechanism of parallel twins related to Si-facetted dendrite growth , 2007 .

[19]  P. Voorhees,et al.  Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .

[20]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[21]  M. Haque,et al.  Effect of process variables on structure and properties of aluminium–silicon piston alloy , 1998 .

[22]  H. Gleiter,et al.  The Formation of Annealing Twins , 1969 .

[23]  Peter W Voorhees,et al.  Measurement of Interfacial Evolution in Three Dimensions , 2012 .

[24]  K. Nakajima,et al.  Growth mechanism of Si-faceted dendrites. , 2008, Physical Review Letters.

[25]  J. L. Fife Three-dimensional characterization and real-time interface dynamics of aluminum-copper dendritic microstructures , 2009 .

[26]  G. Rohrer,et al.  The five parameter grain boundary character distribution of polycrystalline silicon , 2014, Journal of Materials Science.

[27]  K. A. Jackson Crystal growth kinetics , 1984 .

[28]  X. Zeng,et al.  Anisotropy of crystal-melt interfacial free energy of silicon by simulation , 2008 .

[29]  G. Müller,et al.  Crystal growth : from fundamentals to technology , 2004 .

[30]  Jacobson,et al.  Equilibrium shape of Si. , 1993, Physical review letters.

[31]  S. Uda,et al.  Crystal growth and equilibrium crystal shapes of silicon in the melt , 2014 .

[32]  A. Muiznieks,et al.  Study of silicon crystal surface formation based on molecular dynamics simulation results , 2014 .

[33]  J. Taylor,et al.  Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces , 1995 .

[34]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[35]  R. Mendoza Morphological and topological characterization of coarsened dendritic microstructures , 2004 .

[36]  R. Napolitano,et al.  Faceted solidification morphologies in low-growth-rate Al-Si eutectics , 2004 .

[37]  Peter W. Voorhees,et al.  The morphological evolution of dendritic microstructures during coarsening , 2006 .

[38]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces , 1972 .

[39]  J. Howe,et al.  Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy , 2011 .

[40]  S. Tamura,et al.  The formation of twinned metallic crystals , 1926 .

[41]  Marco Stampanoni,et al.  Dose optimization approach to fast X-ray microtomography of the lung alveoli , 2013, Journal of applied crystallography.

[42]  A. K. Tan,et al.  Monte Carlo simulation of crystal growth from silicon melt , 1988 .

[43]  M. Shamsuzzoha,et al.  Crystal morphology of unmodified aluminium-silicon eutectic microstructures , 1986 .

[44]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[45]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[46]  M. Stampanoni,et al.  Regridding reconstruction algorithm for real-time tomographic imaging , 2012, Journal of synchrotron radiation.

[47]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[48]  K. Nogita,et al.  Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys , 2002 .

[49]  H. Ye,et al.  An overview of the development of Al-Si-Alloy based material for engine applications , 2003 .

[50]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[51]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[52]  R. Abela,et al.  Trends in synchrotron-based tomographic imaging: the SLS experience , 2006, SPIE Optics + Photonics.

[53]  Frank Czerwinski,et al.  The basics of modern semi-solid metal processing , 2006 .

[54]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[55]  S. P. Marsh,et al.  Overview of Geometric Effects on Coarsening of Mushy Zones , 1996 .

[56]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[57]  J. Humphreys Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. , 2001 .

[58]  P. Voorhees,et al.  Twin plane re-entrant mechanism for catalytic nanowire growth. , 2014, Nano letters.

[59]  S. Mahajan,et al.  Formation of annealing twins in f.c.c. crystals , 1997 .

[60]  R. Seidensticker,et al.  Propagation Mechanism of Germanium Dendrites , 1960 .