What Is the Main Feature Distinguishing the Through-Space Interactions in Cyclophanes from Their Aliphatic Analogues?

Classical cyclophanes with two benzene rings have been compared with cyclophanes with one benzene ring replaced with an aliphatic part and aliphatic compounds, which are cyclophane analogues. Analysis of geometry, atomic charges, and aromatic and steric energy and investigation of intramolecular noncovalent interactions and charge mobility show that there is no special feature that distinguishes the classical cyclophanes from aliphatic analogues, so the definition of cyclophanes can be extended to other compounds.

[1]  T. Dziembowska,et al.  Substituent effect on inter-ring interaction in paracyclophanes , 2019, Molecular Diversity.

[2]  R. Herges,et al.  Cyclic tris-[5]helicenes with single and triple twisted Möbius topologies and Möbius aromaticity , 2018, Chemical science.

[3]  J. Lahann,et al.  Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. , 2018, Chemical Society reviews.

[4]  Caio L. Firme,et al.  Revisiting electronic nature and geometric parameters of cyclophanes and their relation with stability – DFT, QTAIM and NCI study , 2018, Computational and Theoretical Chemistry.

[5]  A. Hesselmann,et al.  On the Stability of Cyclophane Derivates Using a Molecular Fragmentation Method. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  T. Dziembowska,et al.  Aromaticity and Through-Space Interaction between Aromatic Rings in [2.2]Paracyclophanes. , 2016, The journal of physical chemistry. A.

[7]  J. Hernández‐Trujillo,et al.  Electron density analysis of bent aromatic molecules: intramolecular interactions in small paracyclophanes , 2016, Theoretical Chemistry Accounts.

[8]  Vladimír Lukes,et al.  Theoretical study of substituent effects on the geometry and strain enthalpy in [2,2]paracyclophanes , 2016 .

[9]  Paul Geerlings,et al.  Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. , 2014, Chemistry.

[10]  L. Vaccaro,et al.  Organic Small Molecules for Photonics and Electronics from the [2.2]Paracyclophane Scaffold , 2012 .

[11]  S. Grimme,et al.  Accurate Computation of Structures and Strain Energies of Cyclophanes with Modern DFT Methods , 2012 .

[12]  M. Nishio,et al.  The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. , 2011, Physical chemistry chemical physics : PCCP.

[13]  S. Bachrach DFT study of [2.2]-, [3.3]-, and [4.4]paracyclophanes: strain energy, conformations, and rotational barriers. , 2011, The journal of physical chemistry. A.

[14]  D. Ramaiah,et al.  Functional cyclophanes: promising hosts for optical biomolecular recognition. , 2010, Chemical Society reviews.

[15]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[16]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[17]  Heidi M. Muchall,et al.  New insights into the use of (TD-)DFT for geometries and electronic structures of constrained pi-stacked systems: [n.n]paracyclophanes. , 2008, The journal of physical chemistry. A.

[18]  H. Hopf [2.2]Paracyclophanes in polymer chemistry and materials science. , 2008, Angewandte Chemie.

[19]  S. Galembeck,et al.  A computational study of tetrafluoro-[2.2]cyclophanes. , 2008, The journal of physical chemistry. A.

[20]  R. Parthasarathi,et al.  Chemical reactivity patterns of [n]paracyclophanes , 2007 .

[21]  S. Galembeck,et al.  Computational study about through-bond and through-space interactions in [2.2]cyclophanes. , 2007, The journal of physical chemistry. A.

[22]  M. Ostrowski,et al.  Planarization of the cyclohexane ring by its incorporation into a cyclophane cage : Hexahydrosuperphane , 2006 .

[23]  D. Quiñonero,et al.  Ab initio study of [n.n]paracyclophane (n = 2, 3) complexes with cations: unprecedented through-space substituent effects. , 2006, The journal of physical chemistry. A.

[24]  V. I. Rozenberg,et al.  Novel multichiral diols and diamines by highly stereoselective pinacol coupling of planar chiral [2.2]paracyclophane derivatives. , 2005, Chemistry.

[25]  K. Laali,et al.  A computational study of [2.2]cyclophanes. , 2005, The Journal of organic chemistry.

[26]  T. Friščić,et al.  Cyclophanes and Ladderanes: Molecular Targets for Supramolecular Chemists , 2005 .

[27]  S. Grimme On the importance of electron correlation effects for the pi-pi interactions in cyclophanes. , 2004, Chemistry.

[28]  M. Palusiak,et al.  Are the O-H...H-C intramolecular systems of 2-cyclopropyl ethenol and its derivatives classified as dihydrogen bonds? Ab initio and DFT study , 2004 .

[29]  K. Lyssenko,et al.  The transannular interaction in [2.2]paracyclophane: repulsive or attractive? , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  E. Molins,et al.  About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions , 2001 .

[31]  Rainer Herges and,et al.  Delocalization of Electrons in Molecules , 2001 .

[32]  Paul L. A. Popelier,et al.  Characterization of a Dihydrogen Bond on the Basis of the Electron Density , 1998 .

[33]  S. Lin,et al.  Preparation of 3e,4,5,6e,7,8-hexahydro[2.2]paracyclophane , 1997 .

[34]  R. Bader,et al.  Identifying and Analyzing Intermolecular Bonding Interactions in van der Waals Molecules , 1996 .

[35]  D. Schomburg,et al.  Cyclophanes, XXXIX. The Structure of the Dicyanoacetylene Adducts of [2.2]Paracyclophane , 1995 .

[36]  K. Rissanen,et al.  The First Clamped and Strongly Deformed Adamantane , 1990 .

[37]  M. Ziegler,et al.  Structure of 4,7,12,15-tetrahydro[2.2]paracyclophane; a molecule with interdeck through-space interaction , 1986 .

[38]  Y. Chujo,et al.  Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the conjugated systems and chiroptical properties , 2015 .

[39]  R. Gleiter,et al.  Modern cyclophane chemistry , 2004 .

[40]  F. Bickelhaupt,et al.  Structures and strain energies of small [n]metacyclophanes , 2000 .

[41]  R. Bader Atoms in molecules : a quantum theory , 1990 .