Genetics of polyploid Xenopus

Abstract Polyploidy, in providing duplicate genetic information, might have been an important factor in vertebrate evolution. The African Clawed Frogs of the genus Xenopus , which comprises bisexual species of several different ploidy levels, represent a promising model for an experimental approach to the many problems associated with a polyploid condition.

[1]  J. Kaufman,et al.  Xenopus MHC class II molecules. I. Identification and structural characterization. , 1985, Journal of immunology.

[2]  M. Fischberg,et al.  A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). , 1982, Cytogenetics and cell genetics.

[3]  L. Hamilton An experimental analysis of the development of the haploid syndrome in embryos of Xenopus laevis. , 1963, Journal of embryology and experimental morphology.

[4]  E. Witschi,et al.  Genic Control and Hormonal Reversal of Sex Differentiation in Xenopus.∗ , 1956, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[5]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[6]  A. Wilson,et al.  Albumin phylogeny for clawed frogs (Xenopus). , 1977, Science.

[7]  A. Jeffreys,et al.  Linkage of adult α- and β-globin genes in X. laevis and gene duplication by tetraploidization , 1980, Cell.

[8]  M. Brown-Luedi,et al.  Evolution of vitellogenin genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site of four Xenopus laevis and one chicken gene. , 1984, Nucleic acids research.

[9]  G. S. Whitt,et al.  Loss of duplicate gene expression after polyploidisation , 1977, Nature.

[10]  M. Flajnik,et al.  A third immunoglobulin class in amphibians. , 1985, Journal of immunology.

[11]  A. Morescalchi KARYOLOGY OF THE MAIN GROUPS OF AFRICAN FROGS , 1981 .

[12]  R. Estes Xenopus from the Palaeocene of Brazil and its zoogeographic importance , 1975, Nature.

[13]  H. Kobel,et al.  Developmental capacity of aneuploid Xenopus species hybrids. , 1979, Differentiation; research in biological diversity.

[14]  Müller Wp Diplotene chromosomes of Xenopus hybrid oocytes , 1977 .

[15]  H. Kobel,et al.  Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. , 1972, Cytogenetics.

[16]  A. Blackler,et al.  Transmission of sex cells of one species through the body of a second species in the genus Xenopus. I. Intraspecific matings. , 1972, Developmental biology.

[17]  A. Andres,et al.  Comparative analysis of cloned larval and adult globin cDNA sequences of Xenopus laevis. , 1981, Developmental biology.

[18]  H. Kobel,et al.  Creatine kinase isozymes in pipid frogs: Their genetic bases, gene expressional differences, and evolutionary implications , 1985 .

[19]  F. Stutz,et al.  Isolation and characterization of sarcomeric actin genes expressed in Xenopus laevis embryos. , 1986, Journal of molecular biology.

[20]  H. Kobel,et al.  Hyperdiploid species hybrids for gene mapping in Xenopus , 1979, Nature.