Comparative Analysis of Two Asynchronous Parallelization Variants for a Multi-Objective Coevolutionary Solver

We describe and compare two steady state asynchronous parallelization variants for DECMO2++, a recently proposed multi-objective coevolutionary solver that generally displays a robust run-time convergence behavior. The two asynchronous variants were designed as trade-offs that maintain only two of the three important synchronized interactions / constraints that underpin the (generation-based) DECMO2++ coevolutionary model. A thorough performance evaluation on a test set that aggregates 31 standard benchmark problems shows that while both parallelization options are able to generally preserve the competitive convergence behavior of the baseline coevolutionary solver, the better parallelization choice is to prioritize accurate run-time search adaptation decisions over the ability to perform equidistant fitness sharing.

[1]  Tomohiro Harada Adaptive asynchrony in semi-asynchronous evolutionary algorithm based on performance prediction using search history , 2018, GECCO.

[2]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[3]  Günter Rudolph,et al.  Comparing Asynchronous and Synchronous Parallelization of the SMS-EMOA , 2016, PPSN.

[4]  Edwin Lughofer,et al.  Performance comparison of generational and steady-state asynchronous multi-objective evolutionary algorithms for computationally-intensive problems , 2015, Knowl. Based Syst..

[5]  Keiki Takadama,et al.  Performance comparison of parallel asynchronous multi-objective evolutionary algorithm with different asynchrony , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  Edwin Lughofer,et al.  Efficient Multi-Objective Optimization Using 2-Population Cooperative Coevolution , 2013, EUROCAST.

[8]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[9]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[10]  Matjaz Depolli,et al.  Asynchronous Master-Slave Parallelization of Differential Evolution for Multi-Objective Optimization , 2013, Evolutionary Computation.

[11]  Carlos A. Coello Coello,et al.  A coevolutionary multi-objective evolutionary algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[12]  Edwin Lughofer,et al.  DECMO2: a robust hybrid and adaptive multi-objective evolutionary algorithm , 2014, Soft Computing.

[13]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[14]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[18]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[19]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[20]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[21]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Andrew Lewis,et al.  Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments , 2009 .

[23]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[26]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[27]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[28]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[29]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[30]  Edwin Lughofer,et al.  Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm , 2018, GECCO.