Valley-polarized exciton dynamics in a 2D semiconductor heterostructure

Stacking to prolong valley lifetime In the material MoSe2, which, like graphene, has a two-dimensional honeycomb crystal lattice, the electronic structure has two “valleys.” Electrons can be distinguished by the valley they reside in, making them act as potential information carriers. However, electrons easily lose this information by scattering into the other valley. Rivera et al. placed single layers of MoSe2 and WSe2 on top of each other and shone circularly polarized light on the structure. The light caused excitons—pairs of electrons and holes—to form so that the hole and electron came from the same valley but different layers. The valley-specific character of such excitons persisted far longer than would be possible in a single layer of either material. Science, this issue p. 688 Photoluminescence measurements are used to deduce a valley lifetime of 40 nanoseconds in heterostructures of MoSe2 and WSe2. Heterostructures comprising different monolayer semiconductors provide an attractive setting for fundamental science and device technologies, such as in the emerging field of valleytronics. We realized valley-specific interlayer excitons in monolayer WSe2-MoSe2 vertical heterostructures. We created interlayer exciton spin-valley polarization by means of circularly polarized optical pumping and determined a valley lifetime of 40 nanoseconds. This long-lived polarization enables the visualization of the expansion of a valley-polarized exciton cloud over several micrometers. The spatial pattern of the polarization evolves into a ring with increasing exciton density, a manifestation of valley exciton exchange interactions. Our work introduces van der Waals heterostructures as a promising platform from which to study valley exciton physics.

[1]  Allard Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) , 2015 .

[2]  Xiaodong Xu,et al.  Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.

[3]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[4]  M. Combescot,et al.  Effects of fermion exchange on the polarization of exciton condensates. , 2014, Physical review letters.

[5]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[6]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[7]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[8]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[9]  J. Hone,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014, 1610.04671.

[10]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[11]  X. Marie,et al.  Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers , 2014, 1407.5862.

[12]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[13]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[14]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[15]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[16]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[17]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[18]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[19]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[20]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[21]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[22]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[23]  Qinsheng Wang,et al.  Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. , 2013, ACS nano.

[24]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[25]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[26]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[27]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[28]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[29]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[30]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[31]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[32]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[33]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[34]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[35]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[36]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[37]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[38]  Yoshihisa Yamamoto,et al.  Mott transitions of exciton polaritons and indirect excitons in a periodic potential , 2010, 1003.0967.

[39]  A. Gossard,et al.  Spin Transport of Excitons , 2009 .

[40]  D. Snoke,et al.  Long-range transport in excitonic dark states in coupled quantum wells , 2002, Nature.

[41]  A. Gossard,et al.  Macroscopically ordered state in an exciton system , 2002, Nature.

[42]  B. Laikhtman,et al.  Exciton-exciton interactions in quantum wells: Optical properties and energy and spin relaxation , 2000, cond-mat/0010247.

[43]  C. Piermarocchi,et al.  Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells , 1998 .

[44]  Bradley,et al.  Direct measurement of heavy-hole exciton transport in type-II GaAs/AlAs superlattices. , 1993, Physical review letters.

[45]  E. Finkman,et al.  X‐point excitons in AlAs/GaAs superlattices , 1986 .