Multiconfiguration Pair-Density Functional Theory Calculations of Iron(II) Porphyrin: Effects of Hybrid Pair-Density Functionals and Expanded RAS and DMRG Active Spaces on Spin-State Orderings.

Iron(II) porphyrins play critical roles in enzymes and synthetic catalysts. Computationally determining the spin-state ordering for even the unsubstituted iron(II) porphyrin (FeP) is challenging due to its large size. Multiconfiguration pair-density functional theory (MC-PDFT), a method capable of accurately capturing correlation with lower cost than comparably accurate methods, was previously used to predict a triplet ground state for FeP across a wide range of active spaces up to (34e, 35o). The purpose of this present MC-PDFT study is to determine the effects of including nonlocal exchange in the energy calculation and of using a larger active space size [DMRG(40e, 42o) and RAS(40, 2, 2; 16, 6, 20)] on the calculated FeP spin-state ordering. The recently developed hybrid MC-PDFT method, which uses a weighted average of the MC-PDFT energy and the energy expectation value of the reference wave function, is applied with a weight of the reference wave function energy of λ. We find that increasing λ stabilizes the quintet relative to the triplets. The hybrid tPBE0 functional (tPBE with λ set to 0.25) consistently predicts a triplet ground state with the quintet lying above by 0.10-0.16 eV, depending on the reference wave function. These values are particularly interesting in light of tPBE0's very strong performance for a diverse set of other systems.