Mesh distortion immunity of finite elements and the best-fit paradigm
暂无分享,去创建一个
[1] Ean Tat Ooi,et al. A 20‐node hexahedron element with enhanced distortion tolerance , 2004 .
[2] K. M. Liew,et al. A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field , 2003 .
[3] Douglas N. Arnold,et al. Approximation by quadrilateral finite elements , 2000, Math. Comput..
[4] Jan Bäcklund. On isoparametric elements , 1978 .
[5] Ivo Babuška,et al. Finite Element Methods: Principles for Their Selection. , 1984 .
[6] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[7] S. Rajendran,et al. Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations , 2004 .
[8] Alexander G Iosilevich,et al. An inf-sup test for shell finite elements , 2000 .
[9] Klaus-Jürgen Bathe,et al. On evaluating the inf–sup condition for plate bending elements , 1997 .
[10] G. Prathap. The Finite Element Method in Structural Mechanics , 1993 .
[11] J. A. Stricklin,et al. On isoparametricvs linear strain triangular elements , 1977 .
[12] I. Babuska,et al. The finite element method and its reliability , 2001 .
[13] L. Nash Gifford. More on distorted isoparametric elements , 1979 .