The Nucleoid: an Overview.

This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.

[1]  A. Ishihama,et al.  Isolation and properties of the transcription complex of Escherichia coli RNA polymerase. , 1975, Biochimica et biophysica acta.

[2]  L. Rothfield,et al.  High-affinity binding of hemimethylated oriC by Escherichia coli membranes is mediated by a multiprotein system that includes SeqA and a newly identified factor, SeqB. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Leonard,et al.  IHF and HU stimulate assembly of pre‐replication complexes at Escherichia coli oriC by two different mechanisms , 2002, Molecular microbiology.

[4]  E. Kellenberger Functional consequences of improved structural information on bacterial nucleoids. , 1991, Research in microbiology.

[5]  A. Sirko,et al.  The role of integration host factor In gene expression in Escherichia coli , 1992, Molecular microbiology.

[6]  G. Storz,et al.  The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. , 1994, Molecular microbiology.

[7]  R. Gourse,et al.  A positive control mutant of the transcription activator protein FIS , 1996, Journal of bacteriology.

[8]  D. Edwards,et al.  The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences , 1994, Molecular and cellular biology.

[9]  Fouzia Haider,et al.  Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12 , 2007, Molecular microbiology.

[10]  A. Tramonti,et al.  Antagonistic Role of H-NS and GadX in the Regulation of the Glutamate Decarboxylase-dependent Acid Resistance System in Escherichia coli* , 2005, Journal of Biological Chemistry.

[11]  M. Babu,et al.  High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes , 2007, Nucleic acids research.

[12]  C. Woldringh,et al.  Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA , 1989, Journal of bacteriology.

[13]  S. Busby,et al.  Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR‐dependent Escherichia coli nir promoter , 2004, Molecular microbiology.

[14]  C. Dorman H-NS, the genome sentinel , 2007, Nature Reviews Microbiology.

[15]  J. Hearst,et al.  Dynamics of DNA supercoiling by transcription in Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Ebright,et al.  The Escherichia coli RNA polymerase alpha subunit: structure and function. , 1995, Current opinion in genetics & development.

[17]  Kano Yasunobu,et al.  Histone-like proteins are required for cell growth and constraint of supercoils in DNA. , 1992 .

[18]  A. Murray,et al.  Chromosome and Low Copy Plasmid Segregation in E. coli: Visual Evidence for Distinct Mechanisms , 1997, Cell.

[19]  N R Cozzarelli,et al.  Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. , 1997, Genes & development.

[20]  Jeffrey Green,et al.  Regulation of ndh expression in Escherichia coli by Fis. , 2004, Microbiology.

[21]  B. Uhlin,et al.  Silencing and Activation of ClyA Cytotoxin Expression in Escherichia coli , 2000, Journal of bacteriology.

[22]  Mark S. Thomas,et al.  Downregulation of the Escherichia coli guaB promoter by FIS , 2008, Microbiology.

[23]  I. Moll,et al.  RNA chaperone activity of the Sm‐like Hfq protein , 2003, EMBO reports.

[24]  G. W. Hatfield,et al.  Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. , 2000, The Journal of biological chemistry.

[25]  Naotake Ogasawara,et al.  Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. , 2006, DNA research : an international journal for rapid publication of reports on genes and genomes.

[26]  Eugenia Mileykovskaya,et al.  A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min , 2004, FEBS letters.

[27]  Annick Spassky,et al.  H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro , 1984, Nucleic Acids Res..

[28]  M. Lahooti,et al.  Modulation of the Sensitivity of FimB Recombination to Branched-Chain Amino Acids and Alanine in Escherichia coli K-12 , 2005, Journal of bacteriology.

[29]  A. Ishihama,et al.  Biosynthesis of RNA polymerase in Escherichia coli VI. Distribution of RNA polymerase subunits between nucleoid and cytoplasm. , 1977, Journal of molecular biology.

[30]  C. Woldringh,et al.  Toporegulation of bacterial division according to the nucleoid occlusion model. , 1991, Research in microbiology.

[31]  Paul Skipp,et al.  A dedicated translation factor controls the synthesis of the global regulator Fis , 2004, The EMBO journal.

[32]  B. J. Hinnebusch,et al.  The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia , 1997, Journal of bacteriology.

[33]  R. Blumenthal,et al.  Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR , 2007, BMC Microbiology.

[34]  B. Colonna,et al.  Involvement of FIS in the H‐NS‐mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli  ‡ , 2001, Molecular microbiology.

[35]  J. Collado-Vides,et al.  Identifying global regulators in transcriptional regulatory networks in bacteria. , 2003, Current opinion in microbiology.

[36]  A. Travers,et al.  CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes* , 2001, The Journal of Biological Chemistry.

[37]  Roberto Kolter,et al.  The dps promoter is activated by OxyR during growth and by IHF and σs in stationary phase , 1994, Molecular microbiology.

[38]  R. C. Johnson,et al.  The Fis protein: it's not just for DNA inversion anymore , 1992, Molecular microbiology.

[39]  F. Imamoto,et al.  Properties of DNA-binding of HU heterotypic and homotypic dimers from Escherichia coli. , 1993, Journal of biochemistry.

[40]  R. Gourse,et al.  Activation of Escherichia coli rRNA Transcription by FIS during a Growth Cycle , 1998, Journal of bacteriology.

[41]  C. Gualerzi,et al.  Temperature- and H-NS-Dependent Regulation of a Plasmid-Encoded Virulence Operon Expressing Escherichia coli Hemolysin , 2002, Journal of bacteriology.

[42]  R. Sinden,et al.  Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[44]  E. Chiancone,et al.  DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. , 2004, Nucleic acids research.

[45]  A. Ishihama,et al.  Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. , 2004, Nucleic acids research.

[46]  A. Pittard,et al.  In vitro transcriptional analysis of TyrR-mediated activation of the mtr and tyrP+3 promoters of Escherichia coli , 1996, Journal of bacteriology.

[47]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.

[48]  D Roberts,et al.  Growth phase variation of integration host factor level in Escherichia coli , 1994, Journal of bacteriology.

[49]  M. Jacquet,et al.  A thermostable protein factor acting on in vitro DNA transcription. , 1971, Biochemical and biophysical research communications.

[50]  Thomas Kruse,et al.  Bacterial Mitotic Machineries , 2004, Cell.

[51]  Tsai-Kun Li,et al.  Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization , 2006, Nucleic acids research.

[52]  E. Bonnefoy,et al.  DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. , 1994, Journal of molecular biology.

[53]  S. Gottesman Bacterial regulation: global regulatory networks. , 1984, Annual review of genetics.

[54]  The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis , 2003, Molecular Genetics and Genomics.

[55]  V. Zhurkin,et al.  A-tract clusters may facilitate DNA packaging in bacterial nucleoid , 2005, Nucleic acids research.

[56]  S. Kim,et al.  DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase , 1989, Science.

[57]  C. Gualerzi,et al.  Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. Bracco,et al.  Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. , 1989, The EMBO journal.

[59]  K. Murakami,et al.  Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R M Williams,et al.  Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. , 1997, FEMS microbiology letters.

[61]  Phoebe A Rice,et al.  Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn , 1996, Cell.

[62]  E. Margeat,et al.  The H-NS dimerization domain defines a new fold contributing to DNA recognition , 2003, Nature Structural Biology.

[63]  G. Micheli,et al.  The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains. , 2001, Biochimie.

[64]  K. A. Walker,et al.  Functional Determinants of the Escherichia coli fis Promoter: Roles of −35, −10, and Transcription Initiation Regions in the Response to Stringent Control and Growth Phase-Dependent Regulation , 1999, Journal of bacteriology.

[65]  Meranda D Bradley,et al.  Growth Phase-Dependent Regulation and Stringent Control of fis Are Conserved Processes in Enteric Bacteria and Involve a Single Promoter (fis P) in Escherichia coli , 2004, Journal of bacteriology.

[66]  H. Yuan,et al.  Structural analysis of the transcriptional activation region on Fis: crystal structures of six Fis mutants with different activation properties. , 2000, Journal of molecular biology.

[67]  C. Higgins,et al.  Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria , 1990, Cell.

[68]  F. Imamoto,et al.  Cloning and sequencing of the HU-2 gene of Escherichia coli , 1987, Molecular and General Genetics MGG.

[69]  Donald M. Crothers,et al.  Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF , 2006, Proceedings of the National Academy of Sciences.

[70]  I. Roberts,et al.  SlyA and H-NS Regulate Transcription of the Escherichia coli K5 Capsule Gene Cluster, and Expression of slyA in Escherichia coli Is Temperature-dependent, Positively Autoregulated, and Independent of H-NS* , 2007, Journal of Biological Chemistry.

[71]  S. Zimmerman,et al.  Release of Compact Nucleoids with Characteristic Shapes from Escherichia coli , 2001, Journal of bacteriology.

[72]  Robert M. Blumenthal,et al.  Activation from a Distance: Roles of Lrp and Integration Host Factor in Transcriptional Activation ofgltBDF , 2001, Journal of bacteriology.

[73]  Kevin Struhl,et al.  Copyright © 2004, American Society for Microbiology. All Rights Reserved. Genomic Studies with Escherichia coli MelR Protein: Applications of , 2004 .

[74]  T. Mizuno,et al.  An Escherichia coli protein that preferentially binds to sharply curved DNA. , 1990, Journal of biochemistry.

[75]  C. A. White-Ziegler,et al.  Genome-Wide Identification of H-NS-Controlled, Temperature-Regulated Genes in Escherichiacoli K-12 , 2008, Journal of bacteriology.

[76]  Eric Gilson,et al.  Palindromic units: a case of highly repetitive DNA sequences in bacteria , 1987 .

[77]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[78]  S. Iida,et al.  Bent DNA is needed for recombinational enhancer activity in the site-specific recombination system Cin of bacteriophage P1. The role of FIS protein. , 1989, Journal of molecular biology.

[79]  Byung-Kwan Cho,et al.  Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. , 2008, Genome research.

[80]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[81]  N. Guillén,et al.  Folded chromosomes of vegetative Bacillus subtilis: composition and properties. , 1978, Nucleic acids research.

[82]  Nancy Kleckner,et al.  SeqA: A negative modulator of replication initiation in E. coli , 1994, Cell.

[83]  J. Courcelle,et al.  Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[84]  N. Cozzarelli,et al.  The mechanism of type IA topoisomerases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  B. Uhlin,et al.  Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary-phase survival of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[87]  T. Mizuno,et al.  Solution structure of the DNA binding domain of a nucleoid‐associated protein, H‐NS, from Escherichia coli , 1995, FEBS letters.

[88]  B. Uhlin,et al.  The positive regulator CfaD overcomes the repression mediated by histone‐like protein H‐NS (H1) in the CFA/I fimbrial operon of Escherichia coli. , 1992, The EMBO journal.

[89]  F. Hansen,et al.  The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves , 2006, Molecular microbiology.

[90]  Kami Ahmad,et al.  Rules and regulation in the primary structure of chromatin. , 2007, Current opinion in cell biology.

[91]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[92]  K. Swinger,et al.  IHF and HU: flexible architects of bent DNA. , 2004, Current opinion in structural biology.

[93]  M. Beltrame,et al.  Protein HU binds specifically to kinked DNA , 1993, Molecular microbiology.

[94]  J. Hinton,et al.  H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria , 2006, PLoS pathogens.

[95]  C. Woldringh,et al.  Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. , 2001, Journal of structural biology.

[96]  F. Colland,et al.  σ factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and Lrp transcription factors , 2000, The EMBO journal.

[97]  A. Kornberg,et al.  Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. , 1992, The Journal of biological chemistry.

[98]  M. Bjornsti,et al.  Intracellular location of the histonelike protein HU in Escherichia coli , 1988, Journal of bacteriology.

[99]  R. C. Johnson,et al.  Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli , 1995, Journal of bacteriology.

[100]  P. Stączek,et al.  Gyrase and Topo IV modulate chromosome domain size in vivo , 1998, Molecular microbiology.

[101]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[102]  A. Segall,et al.  Rearrangement of the bacterial chromosome: forbidden inversions. , 1988, Science.

[103]  T. D. Schneider,et al.  Information analysis of Fis binding sites. , 1997, Nucleic acids research.

[104]  C. Dorman,et al.  Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. , 1999, Trends in microbiology.

[105]  G. Ames,et al.  Repetitive extragenic palindromic sequences: A major component of the bacterial genome , 1984, Cell.

[106]  Christopher M Thomas,et al.  Active partitioning of bacterial plasmids. , 1992, Journal of general microbiology.

[107]  L. Claret,et al.  Regulation of HUα and HUβ by CRP and FIS inEscherichia coli , 1996 .

[108]  Michael D. Stone,et al.  Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[109]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[110]  K. Drlica,et al.  Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[111]  R. C. Johnson,et al.  Control of transcription by nucleoid proteins. , 2001, Current opinion in microbiology.

[112]  Marc-Thorsten Hütt,et al.  Dissecting the logical types of network control in gene expression profiles , 2008, BMC Systems Biology.

[113]  Moselio Schaechter,et al.  The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated , 1988, Cell.

[114]  Thomas D Schneider,et al.  Anatomy of Escherichia coli σ 70 promoters. , 2007, Nucleic acids research.

[115]  S. Wolf,et al.  Nucleoid restructuring in stationary‐state bacteria , 2004, Molecular microbiology.

[116]  S. Busby,et al.  The Escherichia coli K-12 NarL and NarP Proteins Insulate the nrf Promoter from the Effects of Integration Host Factor , 2006, Journal of bacteriology.

[117]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[118]  C. Woldringh,et al.  Autoradiographic analysis of diaminopimelic acid incorporation in filamentous cells of Escherichia coli: repression of peptidoglycan synthesis around the nucleoid , 1991, Journal of bacteriology.

[119]  E. L. Zechiedrich,et al.  Topoisomerase IV, alone, unknots DNA in E. coli. , 2001, Genes & development.

[120]  T. Hill,et al.  tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Andrea Ilari,et al.  Iron Incorporation into Escherichia coli Dps Gives Rise to a Ferritin-like Microcrystalline Core* , 2002, The Journal of Biological Chemistry.

[122]  Akira Ishihama,et al.  PdhR (Pyruvate Dehydrogenase Complex Regulator) Controls the Respiratory Electron Transport System in Escherichia coli , 2007, Journal of bacteriology.

[123]  F. Neidhardt,et al.  Stress response of Escherichia coli to elevated hydrostatic pressure , 1993, Journal of bacteriology.

[124]  J. Demoss,et al.  Structure modification induced in the narG promoter by binding of integration host factor and NARL-P , 1996, Journal of bacteriology.

[125]  N. Fujita,et al.  Structure and probable genetic location of a "ribosome modulation factor" associated with 100S ribosomes in stationary-phase Escherichia coli cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[126]  B. Uhlin,et al.  Nucleoid Proteins Stimulate Stringently Controlled Bacterial Promoters A Link between the cAMP-CRP and the (p)ppGpp Regulons in Escherichia coli , 2000, Cell.

[127]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[128]  R. Dame,et al.  HU: promoting or counteracting DNA compaction? , 2002, FEBS letters.

[129]  J. Collado-Vides,et al.  Conservation of DNA curvature signals in regulatory regions of prokaryotic genes. , 2003, Nucleic acids research.

[130]  P. Srivastava,et al.  Cnu, a Novel oriC-Binding Protein of Escherichia coli , 2005, Journal of bacteriology.

[131]  G. Sawers,et al.  Overlapping promoters modulate Fnr- and ArcA-dependent anaerobic transcriptional activation of the focApfl operon in Escherichia coli. , 1997, Microbiology.

[132]  A. Travers,et al.  RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex , 2006, The EMBO journal.

[133]  I. Zhulin,et al.  Predicted structure and phyletic distribution of the RNA-binding protein Hfq. , 2002, Nucleic acids research.

[134]  J. Plumbridge,et al.  Multiple co‐regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N‐acetylglucosamine in Escherichia coli K‐12 , 2007, Molecular microbiology.

[135]  L. Wheeler,et al.  Pre‐replication assembly of E. coli replisome components , 2006, Molecular microbiology.

[136]  D. Esposito,et al.  Identification of Two New Proteins in Spermidine Nucleoids Isolated from Escherichia coli , 1999, Journal of bacteriology.

[137]  M. Buckle,et al.  H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing , 2007, Nature Structural &Molecular Biology.

[138]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[139]  P A de Boer,et al.  Dynamic localization cycle of the cell division regulator MinE in Escherichia coli , 2001, The EMBO journal.

[140]  W. Margolin,et al.  Influence of the Nucleoid on Placement of FtsZ and MinE Rings in Escherichia coli , 2001, Journal of bacteriology.

[141]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[142]  A. Juárez,et al.  Evidence for Direct Protein-Protein Interaction between Members of the Enterobacterial Hha/YmoA and H-NS Families of Proteins , 2002, Journal of bacteriology.

[143]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[144]  Martijn S. Luijsterburg,et al.  DNA Bridging: a Property Shared among H-NS-Like Proteins , 2005, Journal of bacteriology.

[145]  Peter Nilsson,et al.  Transcriptional silencing and thermoregulation of gene expression in Escherichia coli , 1990, Nature.

[146]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[147]  C. Dorman H-NS: a universal regulator for a dynamic genome , 2004, Nature Reviews Microbiology.

[148]  K. Skarstad,et al.  The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro. , 1996, Nucleic acids research.

[149]  C. Higgins,et al.  In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant , 1997, Journal of bacteriology.

[150]  J. Rosner,et al.  Transcriptional and translational regulation of the marRAB multiple antibiotic resistance operon in Escherichia coli , 2004, Molecular microbiology.

[151]  K. Schnetz,et al.  Lac and lambda repressors relieve silencing of the Escherichia coli bgl promoter. Activation by alteration of a repressing nucleoprotein complex. , 1998, Journal of molecular biology.

[152]  A. Worcel,et al.  On the structure of the folded chromosome of Escherichia coli. , 1972, Journal of molecular biology.

[153]  Alan J Wolfe,et al.  Modulation of CRP‐dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti‐activation by the nucleoid proteins FIS and IHF , 2003, Molecular microbiology.

[154]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[155]  S. Zimmerman,et al.  A limited loss of DNA compaction accompanying the release of cytoplasm from cells of Escherichia coli. , 2001, Journal of structural biology.

[156]  J. Wang,et al.  Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I , 1993, Journal of bacteriology.

[157]  A. Ishihama,et al.  Twelve Species of the Nucleoid-associated Protein from Escherichia coli , 1999, The Journal of Biological Chemistry.

[158]  S. Busby,et al.  Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region , 2002, Molecular microbiology.

[159]  R. Kolter,et al.  DNA protection by stress-induced biocrystallization , 1999, Nature.

[160]  N. Cozzarelli,et al.  Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. , 1987, Journal of molecular biology.

[161]  J. Errington,et al.  Upheaval in the bacterial nucleoid. An active chromosome segregation mechanism. , 1999, Trends in Genetics.

[162]  Malcolm Buckle,et al.  A molecular mechanism for the repression of transcription by the H‐NS protein , 2001, Molecular microbiology.

[163]  Gideon Schreiber,et al.  Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation , 1994, Molecular microbiology.

[164]  Stephen Busby,et al.  Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. , 2004, Current opinion in microbiology.

[165]  J. Errington,et al.  Compartmentalization of transcription and translation in Bacillus subtilis , 2000, The EMBO journal.

[166]  S. Adhya,et al.  Spiral structure of Escherichia coli HUαβ provides foundation for DNA supercoiling , 2007, Proceedings of the National Academy of Sciences.

[167]  A. Ishihama,et al.  RutR is the uracil/thymine‐sensing master regulator of a set of genes for synthesis and degradation of pyrimidines , 2007, Molecular microbiology.

[168]  R. D'ari,et al.  The Escherichia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via MinCDE , 1997, Journal of bacteriology.

[169]  K. Kleppe,et al.  The bacterial nucleoid. , 1979, Journal of general microbiology.

[170]  J. Demoss,et al.  Identification of functional cis‐acting sequences involved in regulation of narK gene expression in Escherichia coli , 1992, Molecular microbiology.

[171]  C. D. Hardy,et al.  Alteration of Escherichia coli Topoisomerase IV to Novobiocin Resistance , 2003, Antimicrobial Agents and Chemotherapy.

[172]  Thomas Kruse,et al.  Bacterial DNA segregation by the actin-like MreB protein. , 2005, Trends in cell biology.

[173]  L. Bosch,et al.  The role of FIS in trans activation of stable RNA operons of E. coli. , 1990, The EMBO journal.

[174]  C. Woldringh,et al.  Isolation of the Escherichia coli nucleoid. , 2001, Biochimie.

[175]  R. C. Johnson,et al.  Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. , 1996, Journal of molecular biology.

[176]  A. Ehrenhofer-Murray,et al.  Chromatin dynamics at DNA replication, transcription and repair. , 2004, European journal of biochemistry.

[177]  B. Uhlin,et al.  YdgT, the Hha paralogue in Escherichia coli, forms heteromeric complexes with H‐NS and StpA , 2004, Molecular microbiology.

[178]  C. Woldringh,et al.  Structural and physical aspects of bacterial chromosome segregation. , 2006, Journal of structural biology.

[179]  S. Busby,et al.  Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome , 2006, Nucleic acids research.

[180]  A. Oppenheim,et al.  HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase , 1991, Journal of bacteriology.

[181]  C. Gualerzi,et al.  Selective expression of the β‐subunit of nucleoid‐associated protein HU during cold shock in Escherichia coli , 2002, Molecular microbiology.

[182]  P. Bertin,et al.  H-NS in Gram-negative bacteria: a family of multifaceted proteins. , 2003, Trends in microbiology.

[183]  V. Zhurkin,et al.  DNA trajectory in the Gal repressosome. , 2004, Genes & development.

[184]  C. Wyman,et al.  Structural basis for preferential binding of H-NS to curved DNA. , 2001, Biochimie.

[185]  T. Katayama,et al.  DiaA, a Novel DnaA-binding Protein, Ensures the Timely Initiation of Escherichia coli Chromosome Replication* , 2004, Journal of Biological Chemistry.

[186]  C. Higgins,et al.  H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. , 2002, Journal of molecular biology.

[187]  Akira Ishihama,et al.  Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[188]  S. Zimmerman Studies on the compaction of isolated nucleoids from Escherichia coli. , 2004, Journal of structural biology.

[189]  H. Ingmer,et al.  H‐NS: a modulator of environmentally regulated gene expression , 1997, Molecular microbiology.

[190]  T. Kobayashi,et al.  Evidence of a ter specific binding protein essential for the termination reaction of DNA replication in Escherichia coli. , 1989, The EMBO journal.

[191]  D. Weichart,et al.  Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli , 2003, Molecular microbiology.

[192]  Richard A Stein,et al.  Organization of supercoil domains and their reorganization by transcription , 2005, Molecular microbiology.

[193]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[194]  A. Ishihama,et al.  Adaptation of gene expression in stationary phase bacteria. , 1997, Current opinion in genetics & development.

[195]  S. Zimmerman,et al.  Macromolecular crowding effects on the interaction of DNA with Escherichia coli DNA-binding proteins: a model for bacterial nucleoid stabilization. , 1994, Biochimica et biophysica acta.

[196]  T. Ogura,et al.  Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli. , 1996, Molecular & general genetics : MGG.

[197]  E. Kellenberger,et al.  The bacterial nucleoid revisited. , 1994, Microbiological reviews.

[198]  P A de Boer,et al.  Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[199]  S. Busby,et al.  Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression , 2005, Molecular microbiology.

[200]  D. Sledjeski,et al.  The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. , 2004, Journal of molecular biology.

[201]  Ying Zhang,et al.  Flexible DNA bending in HU–DNA cocrystal structures , 2003, The EMBO journal.

[202]  K. A. Walker,et al.  The Escherichia coli fis Promoter Is Regulated by Changes in the Levels of Its Transcription Initiation Nucleotide CTP* , 2004, Journal of Biological Chemistry.

[203]  S. Adhya,et al.  Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[204]  A. Ishihama,et al.  Protein-protein communication within the transcription apparatus , 1993, Journal of bacteriology.

[205]  A Martinez,et al.  Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps , 1997, Journal of bacteriology.

[206]  C. Pon,et al.  Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15‐kD Escherichia coli DNA binding protein H‐NS , 1988, Molecular microbiology.

[207]  J. Ramstein,et al.  Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. , 2003, Journal of molecular biology.

[208]  W. Goebel,et al.  Differential Regulation of Multiple Proteins of Escherichia coli and Salmonella enterica Serovar Typhimurium by the Transcriptional Regulator SlyA , 2002, Journal of bacteriology.

[209]  J. Roth,et al.  Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium , 1996, Journal of bacteriology.

[210]  J. Kaguni,et al.  Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin , 2007, Molecular microbiology.

[211]  Akira Ishihama,et al.  Two types of localization of the DNA‐binding proteins within the Escherichia coli nucleoid , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[212]  S. Zimmerman Underlying regularity in the shapes of nucleoids of Escherichia coli: implications for nucleoid organization and partition. , 2003, Journal of structural biology.

[213]  O. Espéli,et al.  Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. , 2006, Journal of structural biology.

[214]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[215]  S. Kowalczykowski,et al.  Biochemistry of homologous recombination in Escherichia coli. , 1994, Microbiological reviews.

[216]  C. O'Connor,et al.  BipA: a tyrosine‐phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells , 1998, Molecular microbiology.

[217]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[218]  Steven E. Finkel,et al.  Dps Protects Cells against Multiple Stresses during Stationary Phase , 2004, Journal of bacteriology.

[219]  E. Chiancone,et al.  Iron and Hydrogen Peroxide Detoxification Properties of DNA-binding Protein from Starved Cells , 2002, The Journal of Biological Chemistry.

[220]  Michael B. Beach,et al.  Identification and Characterization of thefis Operon in Enteric Bacteria , 1998, Journal of bacteriology.

[221]  E. Dimitriadis,et al.  Right-handed DNA Supercoiling by an Octameric Form of Histone-like Protein HU , 2006, Journal of Biological Chemistry.

[222]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[223]  A. Ishihama,et al.  Transcriptive complex: isolation by cesium sulfate-centrifugation. , 1973, Biochemical and biophysical research communications.

[224]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[225]  H. Nash,et al.  Heteroduplex substrates for bacteriophage lambda site‐specific recombination: cleavage and strand transfer products. , 1989, The EMBO journal.

[226]  J. Gardner,et al.  Site-Specific Recombination of Bacteriophage P22 Does Not Require Integration Host Factor , 1999, Journal of bacteriology.

[227]  M. Belfort,et al.  Escherichia coli protein analogs StpA and H‐NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. , 1996, The EMBO journal.

[228]  M. Crossley,et al.  Chromatin modifiers in transcription and DNA repair. , 2004, Cellular and molecular life sciences : CMLS.

[229]  O. Gileadi,et al.  Compaction of single DNA molecules induced by binding of integration host factor (IHF) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[230]  David Bensimon,et al.  Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[231]  R. Utsumi,et al.  Functional Characterization in Vitro of All Two-component Signal Transduction Systems from Escherichia coli* , 2005, Journal of Biological Chemistry.

[232]  R. Wagner,et al.  Structural Basis for H-NS-mediated Trapping of RNA Polymerase in the Open Initiation Complex at the rrnB P1* , 2002, The Journal of Biological Chemistry.

[233]  D. Pettijohn,et al.  Supercoils in prokaryotic DNA restrained in vivo. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[234]  A. Kornberg,et al.  A novel binding protein of the origin of the Escherichia coli chromosome. , 1993, The Journal of biological chemistry.

[235]  R. Ebright,et al.  RNA Polymerase β′ Subunit: A Target of DNA Binding-Independent Activation , 1997, Science.

[236]  C. Smith,et al.  Transcription regulates oxolinic acid-induced DNA gyrase cleavage at specific sites on the E. coli chromosome. , 1990, Nucleic acids research.

[237]  E. Yagil,et al.  The effect of IHF on σS selectivity of the phoA and pst promoters of Escherichia coli , 2006, Archives of Microbiology.

[238]  C. Pon,et al.  Multimeric Self-assembly Equilibria Involving the Histone-like Protein H-NS , 2000, The Journal of Biological Chemistry.

[239]  S. Busby,et al.  Selective repression by Fis and H‐NS at the Escherichia coli dps promoter , 2008, Molecular microbiology.

[240]  R. Ladenstein,et al.  The multi-layered structure of Dps with a novel di-nuclear ferroxidase center. , 2003, Journal of molecular biology.

[241]  Nicholas R. Cozzarelli,et al.  Roles of supercoiled DNA structure in DNA transactions , 1992, Current Biology.

[242]  R. G. Lloyd,et al.  Genome stability and the processing of damaged replication forks by RecG. , 2002, Trends in genetics : TIG.

[243]  S. Busby,et al.  Suppression of FNR‐dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H‐NS: modulation of transcription initiation by a complex nucleo‐protein assembly , 2000, Molecular microbiology.

[244]  E. Trifonov,et al.  The pitch of chromatin DNA is reflected in its nucleotide sequence. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[245]  R. G. Lloyd,et al.  Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12. , 1996, Genetics.

[246]  H. Buc,et al.  Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives , 1996, Journal of bacteriology.

[247]  L. Bossi,et al.  Growth-dependent DNA breakage and cell death in a gyrase mutant of Salmonella. , 2001, Genetics.

[248]  Joon-Hee Lee,et al.  IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe‐S assembly proteins , 2006, Molecular microbiology.

[249]  Rolf Wagner,et al.  The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. , 2007, Journal of molecular biology.

[250]  J. Kahn,et al.  Corrigendum to “Bacterial Repression Loops Require Enhanced DNA Flexibility” [J. Mol. Biol. (2005) 349, 716–730] , 2005 .

[251]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[252]  S. Zimmerman,et al.  Isolation and characterization of spermidine nucleoids from Escherichia coli. , 1997, Journal of structural biology.

[253]  D. Pettijohn,et al.  Histone-like proteins and bacterial chromosome structure. , 1988, The Journal of biological chemistry.

[254]  Akira Ishihama,et al.  Systematic search for the Cra‐binding promoters using genomic SELEX system , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[255]  C. Higgins,et al.  Expression and mutational analysis of the nucleoid‐associated protein H‐NS of Salmonella typhimurium , 1992, Molecular microbiology.

[256]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[257]  A. Danchin,et al.  Multiple Control of Flagellum Biosynthesis in Escherichia coli: Role of H-NS Protein and the Cyclic AMP-Catabolite Activator Protein Complex in Transcription of the flhDC Master Operon , 1999, Journal of bacteriology.

[258]  M. Cox,et al.  RecA protein: structure, function, and role in recombinational DNA repair. , 1997, Progress in nucleic acid research and molecular biology.

[259]  E. Kellenberger,et al.  Coralline shape of the bacterial nucleoid after cryofixation , 1991, Journal of bacteriology.

[260]  K. Schnetz,et al.  Antagonistic control of the Escherichia coli bgl promoter by FIS and CAP in vitro , 2000, Molecular microbiology.

[261]  T. Mizuno,et al.  The Escherichia coli nucleoid protein H‐NS functions directly as a transcriptional repressor. , 1993, The EMBO journal.

[262]  Bernhard Ø. Palsson,et al.  Immobilization of Escherichia coli RNA Polymerase and Location of Binding Sites by Use of Chromatin Immunoprecipitation and Microarrays , 2005, Journal of bacteriology.

[263]  P. Hagerman,et al.  DNA ring closure mediated by protein HU. , 1989, The Journal of biological chemistry.

[264]  K. Swinger,et al.  Structure-based analysis of HU-DNA binding. , 2007, Journal of molecular biology.

[265]  S. Wai,et al.  Heteromeric Interactions among Nucleoid-Associated Bacterial Proteins: Localization of StpA-Stabilizing Regions in H-NS of Escherichia coli , 2001, Journal of bacteriology.

[266]  R. Kolter,et al.  A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. , 1992, Genes & development.

[267]  Akira Ishihama,et al.  Genomic SELEX Search for Target Promoters under the Control of the PhoQP-RstBA Signal Relay Cascade , 2007, Journal of bacteriology.

[268]  J. Beckwith,et al.  Assembly of cell division proteins at the E. coli cell center. , 2002, Current opinion in microbiology.

[269]  C. Gualerzi,et al.  Escherichia coli DNA-binding protein H-NS is localized in the nucleoid. , 1991, Research in microbiology.

[270]  S. Bae,et al.  Structure of the nucleoid-associated protein Cnu reveals common binding sites for H-NS in Cnu and Hha. , 2008, Biochemistry.

[271]  A. Mirzabekov,et al.  Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. , 2001, Nucleic acids research.

[272]  Chien-Chung Chen,et al.  A Cis-spreading Nucleoprotein Filament Is Responsible for the Gene Silencing Activity Found in the Promoter Relay Mechanism* , 2005, Journal of Biological Chemistry.

[273]  C. Wyman,et al.  H-NS mediated compaction of DNA visualised by atomic force microscopy. , 2000, Nucleic acids research.

[274]  K. Murakami,et al.  Bacterial RNA polymerases: the wholo story. , 2003, Current opinion in structural biology.

[275]  H. Nash,et al.  Similarity between the DNA-binding domains of IHF protein and TFIID protein , 1991, Cell.

[276]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[277]  M. Yaniv,et al.  E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA , 1979, Cell.

[278]  A. Ishihama,et al.  Growth Phase-Coupled Alterations in Cell Structure and Function of Escherichia coli , 2003, Journal of bacteriology.

[279]  P. Small,et al.  Transcriptional Expression of Escherichia coli Glutamate-Dependent Acid Resistance Genes gadA and gadBC in an hns rpoS Mutant , 2003, Journal of bacteriology.

[280]  S. Zimmerman,et al.  Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: implications for in vivo nucleoid structure. , 1997, Journal of structural biology.

[281]  S. Zimmerman Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase. , 2006, Journal of structural biology.

[282]  D. Friedman,et al.  Integration host factor: A protein for all reasons , 1988, Cell.

[283]  J. Wang,et al.  Gene silencing via protein-mediated subcellular localization of DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[284]  K. Schnetz,et al.  The histone‐like nucleoid structuring protein H‐NS represses the Escherichia coli bgl operon downstream of the promoter , 2004, Molecular microbiology.

[285]  J. Hacker,et al.  Role of Histone-Like Proteins H-NS and StpA in Expression of Virulence Determinants of Uropathogenic Escherichia coli , 2006, Journal of bacteriology.

[286]  C. Speck,et al.  Mechanism of origin unwinding: sequential binding of DnaA to double‐ and single‐stranded DNA , 2001, The EMBO journal.

[287]  A. Grossman,et al.  Chromosome arrangement within a bacterium , 1998, Current Biology.

[288]  S. Adhya,et al.  Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli , 1999, Molecular microbiology.

[289]  A. Chang,et al.  Localization of transcribing genes in the bacterial cell by means of high resolution autoradiography. , 1975, Journal of molecular biology.

[290]  S. Garges,et al.  Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. , 2003, Biochemistry.

[291]  Cees Dekker,et al.  Dual architectural roles of HU: formation of flexible hinges and rigid filaments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[292]  S. Nedospasov,et al.  Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. , 1977, Nucleic acids research.

[293]  A. Ishihama Role of the RNA polymerase α subunit in transcription activation , 1992, Molecular microbiology.

[294]  The molecular structure of wild-type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA binding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[295]  W. Saenger,et al.  Three-dimensional structure of the E. coli DMA-binding protein FIS , 1991, Nature.

[296]  K. Drlica,et al.  Histonelike proteins of bacteria. , 1987, Microbiological reviews.

[297]  P. Cook The organization of replication and transcription. , 1999, Science.

[298]  M. Belfort,et al.  Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. , 1992, Nucleic acids research.

[299]  Yongping Shao,et al.  Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. , 2008, Journal of molecular biology.

[300]  H. Delius,et al.  Electron microscopic studies on the folded chromosome of Escherichia coli. , 1974, Cold Spring Harbor symposia on quantitative biology.

[301]  T. Ogura,et al.  E.coli MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities. , 1992, The EMBO journal.

[302]  Lynda I. Smith-Mungo,et al.  Structure of the P22 att site. Conservation and divergence in the lambda motif of recombinogenic complexes. , 1994, The Journal of biological chemistry.

[303]  Roee Amit,et al.  Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. , 2003, Biophysical journal.

[304]  M. Botchan,et al.  Assembly of nucleosomes: do multiple assembly factors mean multiple mechanisms? , 1994, Current opinion in genetics & development.

[305]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[306]  S. Bolland,et al.  The hha gene modulates haemolysin expression in Escherichia coli , 1991, Molecular microbiology.

[307]  I. Pastan,et al.  Cyclic adenosine 5'-monophosphate in Escherichia coli. , 1976, Bacteriological reviews.

[308]  R. Kolter,et al.  The crystal structure of Dps, a ferritin homolog that binds and protects DNA , 1998, Nature Structural Biology.

[309]  R. Kolter,et al.  Regulated phase transitions of bacterial chromatin: a non‐enzymatic pathway for generic DNA protection , 2001, The EMBO journal.

[310]  A. Kornberg,et al.  Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[311]  R. Burgess,et al.  How sigma docks to RNA polymerase and what sigma does. , 2001, Current opinion in microbiology.