Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations

[1]  B. Gillanders,et al.  Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation , 2018 .

[2]  D. Crook,et al.  Stock structure of Lethrinus laticaudis (Lethrinidae) across northern Australia determined using genetics, otolith microchemistry and parasite assemblage composition , 2018 .

[3]  W. J. Kennington,et al.  Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species , 2017, Scientific Reports.

[4]  J. Zambonino-Infante,et al.  Contrasting patterns of energy metabolism in northern vs southern peripheral European flounder populations exposed to temperature rising and hypoxia. , 2017, Marine environmental research.

[5]  Daniel R. Goethel,et al.  Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish , 2017 .

[6]  Michael S. Harvey,et al.  Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss , 2017, Nature Ecology & Evolution.

[7]  A. Norkko,et al.  Extraordinarily rapid speciation in a marine fish , 2017, Proceedings of the National Academy of Sciences.

[8]  Audrey M. Darnaude,et al.  Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish , 2017 .

[9]  M. Heupel,et al.  Crossing lines: a multidisciplinary framework for assessing connectivity of hammerhead sharks across jurisdictional boundaries , 2017, Scientific Reports.

[10]  M. Jessopp,et al.  Localised residency and inter-annual fidelity to coastal foraging areas may place sea bass at risk to local depletion , 2017, Scientific Reports.

[11]  A. Lensu,et al.  Oxygen and carbon isoscapes for the Baltic Sea: Testing their applicability in fish migration studies , 2017, Ecology and evolution.

[12]  B. Gillanders,et al.  Integrated approach to determining stock structure: implications for fisheries management of sardine, Sardinops sagax, in Australian waters , 2017, Reviews in Fish Biology and Fisheries.

[13]  S. Hawkins,et al.  Fisheries stocks from an ecological perspective: Disentangling ecological connectivity from genetic interchange , 2016 .

[14]  M. W. Pedersen,et al.  Historical DNA documents long-distance natal homing in marine fish. , 2016, Molecular ecology.

[15]  S. Schmidt,et al.  Benthic stable isotope variability in the Trondheimsfjord during the last 50 years: Proxy records of mixing dynamics related to NAO , 2016 .

[16]  Daniel W. Fuller,et al.  Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource , 2015, Scientific Reports.

[17]  P. Snelgrove,et al.  Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua) , 2015 .

[18]  J. Zambonino-Infante,et al.  New set of candidate gene SNPs and microsatellites to disentangle selective and neutral processes shaping population responses of European flounder (Platichthys flesus) to anthropogenic stress and contrasted environments , 2015, Conservation Genetics Resources.

[19]  E. Hunter,et al.  Quantifying physiological influences on otolith microchemistry , 2015 .

[20]  H. Cabral,et al.  Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius) , 2014 .

[21]  E. Hunter,et al.  Physiological influences can outweigh environmental signals in otolith microchemistry research , 2014 .

[22]  M. Pardal,et al.  Juvenile nursery colonization patterns for the European flounder (Platichthys flesus): A latitudinal approach ☆ , 2013 .

[23]  T. Elsdon,et al.  Connectivity between estuarine and coastal fish populations: contributions of estuaries are not consistent over time , 2013 .

[24]  S. Swearer,et al.  Inferring dispersal and migrations from incomplete geochemical baselines: analysis of population structure using Bayesian infinite mixture models , 2013 .

[25]  T. Elsdon,et al.  Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax , 2013 .

[26]  L. Zane,et al.  Single population and common natal origin for Adriatic Scomber scombrus stocks: evidence from an integrated approach , 2013 .

[27]  A. Meistertzheim,et al.  Genetic structure of European flounder Platichthys flesus: effects of both the southern limit of the species' range and chemical stress , 2013 .

[28]  B. vonHoldt,et al.  STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method , 2012, Conservation Genetics Resources.

[29]  Audrey M. Darnaude,et al.  Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? , 2012, Journal of fish biology.

[30]  K. Limburg,et al.  Tracking Baltic hypoxia and cod migration over millennia with natural tags , 2011, Proceedings of the National Academy of Sciences.

[31]  S. Swearer,et al.  Scale-dependent variability in Forsterygion lapillum hatchling otolith chemistry: implications and solutions for studies of population connectivity , 2010 .

[32]  S. Campana,et al.  Integrated stock mixture analysis for continous and categorical data, with application to genetic- otolith combinations , 2010 .

[33]  F. Allendorf,et al.  What can genetics tell us about population connectivity? , 2010, Molecular ecology.

[34]  D. Crook,et al.  Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry , 2010 .

[35]  Diana Perdiguero-Alonso,et al.  Multi-disciplinary fingerprints reveal the harvest location of cod Gadus morhua in the northeast Atlantic , 2010 .

[36]  G. Hoarau,et al.  Genetic population structure of marine fish : mismatch between biological and fisheries management units , 2009 .

[37]  G. Jones,et al.  Larval dispersal connects fish populations in a network of marine protected areas , 2009, Proceedings of the National Academy of Sciences.

[38]  P. Levin,et al.  Spatial and temporal patterns in the contribution of fish from their nursery habitats , 2009, Oecologia.

[39]  G. Turner,et al.  The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species , 2009, Proceedings of the National Academy of Sciences.

[40]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[41]  S. Munch,et al.  A Bayesian approach to identifying mixtures from otolith chemistry data , 2008 .

[42]  A. Punt,et al.  Integrating genetic data into management of marine resources: how can we do it better? , 2008 .

[43]  Barbara A. Block,et al.  Natal Homing and Connectivity in Atlantic Bluefin Tuna Populations , 2008, Science.

[44]  J. Höglund,et al.  Population structure of flounder (Platichthys flesus) in the Baltic Sea: differences among demersal and pelagic spawners , 2008, Heredity.

[45]  C. Stransky,et al.  Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea : Integrating the results from different stock identification approaches , 2008 .

[46]  D. Bekkevold,et al.  Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring , 2006, Proceedings of the Royal Society B: Biological Sciences.

[47]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[48]  Claire B Paris-Limouzy,et al.  Scaling of Connectivity in Marine Populations , 2006, Science.

[49]  R. Sturgeon,et al.  Certification of a fish otolith reference material in support of quality assurance for trace element analysis , 2005 .

[50]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[51]  S. Kalinowski hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness , 2005 .

[52]  B. Gillanders,et al.  Chemical tags in otoliths indicate the importance of local and distant settlement areas to populations of a temperate sparid, Pagrus auratus , 2005 .

[53]  Laurent Excoffier,et al.  Arlequin (version 3.0): An integrated software package for population genetics data analysis , 2005, Evolutionary bioinformatics online.

[54]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[55]  R. Hilborn,et al.  Biocomplexity and fisheries sustainability , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Palumbi POPULATION GENETICS, DEMOGRAPHIC CONNECTIVITY, AND THE DESIGN OF MARINE RESERVES , 2003 .

[57]  B. Gillanders Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? , 2002 .

[58]  B. Gillanders Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations , 2002 .

[59]  H. Cabral,et al.  Does the Tagus estuary fish community reflect environmental changes , 2001 .

[60]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[61]  Cynthia M. Jones,et al.  Natal homing in a marine fish metapopulation. , 2001, Science.

[62]  W. Curry,et al.  Calibration of stable isotopic data: An enriched δ18O standard used for source gas mixing detection and correction , 2000 .

[63]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[64]  J. Yoshinaga,et al.  Fish otolith reference material for quality assurance of chemical analyses , 2000 .

[65]  S. Campana Chemistry and composition of fish otoliths : pathways, mechanisms and applications , 1999 .

[66]  S. Campana,et al.  Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish , 1997 .

[67]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[68]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[69]  S. Hawkins,et al.  Conceptual and practical advances in fish stock delineation , 2016 .

[70]  P. Reis-Santos,et al.  Otolith chemistry in stock delineation: A brief overview, current challenges and future prospects , 2016 .

[71]  K. Limburg,et al.  In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia , 2015 .

[72]  S. Cadrin,et al.  Interdisciplinary Evaluation of Spatial Population Structure for Definition of Fishery Management Units , 2014 .

[73]  P. Hamer,et al.  Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae , 2012 .

[74]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[75]  S. Thorrold,et al.  Population differences in otolith chemistry have a genetic basis in Menidia menidia , 2011 .

[76]  P. Reis-Santos,et al.  Spatial and ontogenetic variability in the chemical composition of juvenile common sole (Solea solea) otoliths , 2011 .

[77]  I. Nagelkerken Ecological connectivity among tropical coastal ecosystems , 2009 .

[78]  B. Gillanders Tools for studying biological marine ecosystem interactions-natural and artificial tags , 2009 .

[79]  Explore Configuring A Simulation Study to , 2004 .

[80]  W. Curry,et al.  An enriched δ18O standard used for source gas mixing detection and correction , 2000 .

[81]  F. Bonhomme,et al.  GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. , 1996 .