Symmetry Abstractions for Hybrid Systems and their Applications

A symmetry of a dynamical system is a map that transforms one trajectory to another trajectory. We introduce a new type of abstraction for hybrid automata based on symmetries. The abstraction combines different modes in a concrete automaton A, whose trajectories are related by symmetries, into a single mode in the abstract automaton B. The abstraction sets the guard and reset of an abstract edge to be the union of the symmetry-transformed guards and resets of the concrete edges. We establish the soundness of the abstraction using a forward simulation relation (FSR) and present several examples. Our abstraction results in simpler automata, that are more amenable for formal analysis and design. We illustrate an application of this abstraction in making reachability analysis faster and enabling unbounded time safety verification. We show how a fixed point of the reachable set computation of B can be used to answer reachability queries for A, even if the latter visits an infinite and unbounded sequences of modes. We present our implementation of the abstraction construction, the fixed point check, and the map that transforms abstract reachable sets to concrete ones in a software tool. Finally, we show the advantage of our method over existing ones, and the different aspects of our abstraction, in a sequence of experiments including scenarios with linear and nonlinear agents following waypoints.

[1]  Gregory Hagen,et al.  Symmetry and Symmetry-Breaking for a Wave Equation with Feedback , 2007, SIAM J. Appl. Dyn. Syst..

[2]  Sriram Sankaranarayanan,et al.  Models, Devices, Properties, and Verification of Artificial Pancreas Systems , 2019, Automated Reasoning for Systems Biology and Medicine.

[3]  James Kapinski,et al.  Locally optimal reach set over-approximation for nonlinear systems , 2016, 2016 International Conference on Embedded Software (EMSOFT).

[4]  Mahesh Viswanathan,et al.  Meeting a Powertrain Verification Challenge , 2015, CAV.

[5]  Ufuk Topcu,et al.  TuLiP: a software toolbox for receding horizon temporal logic planning , 2011, HSCC '11.

[6]  Mahesh Viswanathan,et al.  Statistical Verification of the Toyota Powertrain Control Verification Benchmark , 2017, HSCC.

[7]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Antoine Girard,et al.  Approximate Simulation Relations for Hybrid Systems , 2008, Discret. Event Dyn. Syst..

[9]  Xin Chen,et al.  Reachability analysis of non-linear hybrid systems using Taylor Models , 2015 .

[10]  Mahesh Viswanathan,et al.  Hybrid automata-based CEGAR for rectangular hybrid systems , 2013, Formal Methods Syst. Des..

[11]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[12]  Mahesh Viswanathan,et al.  HARE: A Hybrid Abstraction Refinement Engine for Verifying Non-linear Hybrid Automata , 2017, TACAS.

[13]  Sriram Sankaranarayanan,et al.  Change-of-bases abstractions for non-linear hybrid systems , 2016 .

[14]  Paulo Tabuada,et al.  Composing Abstractions of Hybrid Systems , 2002, HSCC.

[15]  Francesco Bullo,et al.  Controlled symmetries and passive walking , 2005, IEEE Transactions on Automatic Control.

[16]  J. Hanc,et al.  Symmetries and conservation laws: Consequences of Noether’s theorem , 2004 .

[17]  Kenneth R. Butts,et al.  Powertrain control verification benchmark , 2014, HSCC.

[18]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[19]  Chuchu Fan,et al.  Multi-agent Safety Verification Using Symmetry Transformations , 2019, TACAS.

[20]  Chuchu Fan,et al.  Data-Driven Formal Reasoning and Their Applications in Safety Analysis of Vehicle Autonomy Features , 2018, IEEE Design & Test.

[21]  Taylor T. Johnson,et al.  Numerical verification of affine systems with up to a billion dimensions , 2018, HSCC.

[22]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2003, Theor. Comput. Sci..

[23]  Nancy A. Lynch,et al.  The Theory of Timed I/o Automata , 2003 .

[24]  Mahesh Viswanathan,et al.  STORMED Hybrid Systems , 2008, ICALP.

[25]  Chuchu Fan,et al.  Bounded Verification with On-the-Fly Discrepancy Computation , 2015, ATVA.

[26]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[27]  Philippe Martin,et al.  Symmetry-Preserving Observers , 2006, IEEE Transactions on Automatic Control.

[28]  Rupak Majumdar,et al.  Lazy Abstraction-Based Control for Safety Specifications , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[29]  Mahesh Viswanathan,et al.  C2E2: A Verification Tool for Stateflow Models , 2015, TACAS.

[30]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[31]  Sašo Blaič A novel trajectory-tracking control law for wheeled mobile robots , 2011 .

[32]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[33]  Paulo Tabuada,et al.  Hybrid Abstractions that Preserve Timed Languages , 2001, HSCC.

[34]  Saso Blazic,et al.  A novel trajectory-tracking control law for wheeled mobile robots , 2011, Robotics Auton. Syst..

[35]  Sumit Kumar Jha,et al.  Refining Abstractions of Hybrid Systems Using Counterexample Fragments , 2005, HSCC.

[36]  Stanley Bak,et al.  HyLAA: A Tool for Computing Simulation-Equivalent Reachability for Linear Systems , 2017, HSCC.

[37]  Oded Maler,et al.  Accurate hybridization of nonlinear systems , 2010, HSCC '10.

[38]  Sayan Mitra,et al.  Using Symmetry Transformations in Equivariant Dynamical Systems for Their Safety Verification , 2019, ATVA.

[39]  E. Noether Invarianten beliebiger Differentialausdrücke , 1918 .

[40]  Sayan Mitra,et al.  A verification framework for hybrid systems , 2007 .

[41]  Antoine Girard,et al.  Controller synthesis for safety and reachability via approximate bisimulation , 2010, Autom..

[42]  Mahesh Viswanathan,et al.  DryVR: Data-Driven Verification and Compositional Reasoning for Automotive Systems , 2017, CAV.

[43]  John N. Maidens,et al.  Exploiting Symmetry for Discrete-Time Reachability Computations , 2018, IEEE Control Systems Letters.

[44]  Sriram Sankaranarayanan,et al.  Model-based falsification of an artificial pancreas control system , 2017, SIGBED.

[45]  Matthias Althoff,et al.  An Introduction to CORA 2015 , 2015, ARCH@CPSWeek.

[46]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[47]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[48]  Jean-Jacques Slotine,et al.  Neuronal networks and controlled symmetries, a generic framework , 2006, q-bio/0612049.

[49]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[50]  Ezio Bartocci,et al.  From Cardiac Cells to Genetic Regulatory Networks , 2011, CAV.

[51]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2006, Theor. Comput. Sci..

[52]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[53]  Rajeev Alur,et al.  Principles of Cyber-Physical Systems , 2015 .