Automated coronal hole segmentation from Solar EUV Images using the watershed transform

After the seed is indicated, the segmentation process progresses automatically.A new algorithm for merging regions into the output mask of the coronal hole.The average time of segmentation of a single coronal hole is 342ms.Based on the experiments completed, Dice's index averages 89%.High accuracy of segmentation results for coronal holes of irregular shape. Region of interest segmentation in solar images is the subject of frequent research in solar physics. This study outlines watershed by immersion segmentation to identify coronal hole areas in solar images acquired using the Extreme UV Imaging Telescope (EIT). Solutions presented here produce highly accurate segmentation results of coronal holes of irregular shape, and what is more, they do so for images representing varied solar activity, recorded in different years and months. In addition, the solutions presented here make all the methods used operate very quickly. These methods include: the preprocessing step before the watershed segmentation, the watershed segmentation itself, and also the postprocessing of solar images after the watershed segmentation. The mean duration of the entire segmentation process of solar images amounts to 342ms for a single coronal hole, without the parallel implementation of the methods used. The experiments were carried out on a computer with an Intel Core i7 CPU @ 2GHz and 4GB RAM. After the seed point is identified inside the coronal hole, the segmentation runs automatically.

[1]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Vincent Barra,et al.  Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering , 2008 .

[3]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[4]  Marcin Ciecholewski,et al.  Gallbladder shape extraction from ultrasound images using active contour models , 2013, Comput. Biol. Medicine.

[5]  Carlos Caballero,et al.  Automatic Detection of Active Region on EUV Solar Images Using Fuzzy Clustering , 2010, IPMU.

[6]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[7]  Vincent Barra,et al.  Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23 , 2009 .

[8]  Larisza D. Krista,et al.  Automated Coronal Hole Detection Using Local Intensity Thresholding Techniques , 2009, 0905.1814.

[9]  Arnold Hanslmeier,et al.  Automatic Image Processing in the Frame of a Solar Flare Alerting System , 2000 .

[10]  Valentina V. Zharkova,et al.  Automated Recognition of Sunspots on the SOHO/MDI White Light Solar Images , 2004, KES.

[11]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[13]  Hossein Mobahi,et al.  Segmentation of Natural Images by Texture and Boundary Compression , 2011, International Journal of Computer Vision.

[14]  Gilles Bertrand,et al.  Quasi-Linear Algorithms for the Topological Watershed , 2005, Journal of Mathematical Imaging and Vision.

[16]  Leo Grady,et al.  Isoperimetric graph partitioning for image segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  J. Aboudarham,et al.  Filament Recognition and Image Cleaning on Meudon Hα Spectroheliograms , 2005 .

[18]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[19]  S. Mathew,et al.  Automated Detection of Filaments and Their Disappearance Using Full-Disc Hα Images , 2009, 0905.3055.

[20]  Cordelia Schmid,et al.  Human Detection Using Oriented Histograms of Flow and Appearance , 2006, ECCV.

[21]  M. Fouesneau,et al.  Automatic detection and tracking of filaments for a solar feature database , 2008 .

[22]  Koen L. Vincken,et al.  Probabilistic segmentation of white matter lesions in MR imaging , 2004, NeuroImage.

[23]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[24]  C. Alex Young,et al.  Multiscale Edge Detection in the Corona , 2008 .

[25]  章 毓晋,et al.  Advances in image and video segmentation , 2006 .

[26]  Narendra Ahuja,et al.  Automatic segmentation of granular objects in images: Combining local density clustering and gradient-barrier watershed , 2014, Pattern Recognit..

[27]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[28]  Christian Gout,et al.  Generalized fast marching method: applications to image segmentation , 2008, Numerical Algorithms.

[29]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Luis Álvarez,et al.  Morphological snakes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Michel Couprie,et al.  Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts , 2010, Image Vis. Comput..

[32]  Hossein Mobahi,et al.  Natural Image Segmentation with Adaptive Texture and Boundary Encoding , 2009, ACCV.

[33]  Gilles Bertrand,et al.  Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[36]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[37]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[38]  Tao Zhang,et al.  Model-based segmentation of medical imagery by matching distributions , 2005, IEEE Transactions on Medical Imaging.

[39]  Gilles Bertrand,et al.  Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[41]  Yi-Ping Hung,et al.  Region-based image retrieval using color-size features of watershed regions , 2009, J. Vis. Commun. Image Represent..

[42]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Mariusz Nieniewski,et al.  Extraction of diffuse objects from images by means of watershed and region merging: example of solar images , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[44]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[45]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[46]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Rami Qahwaji,et al.  Automated McIntosh-Based Classification of Sunspot Groups Using MDI Images , 2008 .