Simple and efficient finite-element analysis of microwave and optical waveguides

A simple and efficient finite-element method for the analysis of microwave and optical waveguiding problems is formulated using three components of the electric or magnetic field. In order to eliminate spurious solutions, edge elements are introduced. In the edge element approach the nodal parameters are not limited to the magnetic field as in the conventional three-component formulation for the dielectric waveguiding problem. An eigenvalue equation that involves only the edge variables in the transversal plane and can provide a direct solution for the propagation constant is derived. To show the validity and usefulness of this approach, computed results are illustrated for microstrip transmission lines and dielectric waveguides. >

[1]  Masanori Koshiba,et al.  Vectorial finite-element method without spurious solutions for dielectric waveguide problems , 1984 .

[2]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[3]  Masanori Koshiba,et al.  Finite element formulation for lossy waveguides , 1988 .

[4]  J. Goell A circular-harmonic computer analysis of rectangular dielectric waveguides , 1969 .

[5]  Mitsuo Hano,et al.  Vector finite‐element solution of anisotropic waveguides using novel triangular elements , 1988 .

[6]  Z. J. Cendes,et al.  Combined finite element-modal solution of three-dimensional eddy current problems , 1988 .

[7]  M. Hano Finite-Element Analysis of Dielectric-Loaded Waveguides , 1984 .

[8]  S. B. Dong,et al.  Single-mode optical waveguides. , 1979, Applied optics.

[9]  Jon P. Webb,et al.  Finite element analysis of dispersion in waveguides with sharp metal edges , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[10]  Akihisa Kameari,et al.  Calculation of transient 3D eddy current using edge-elements , 1990 .

[11]  Yilong Lu,et al.  Variational finite element analysis of dielectric waveguides with no spurious solutions , 1990 .

[12]  Jon P. Webb,et al.  Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges , 1991 .

[13]  B. Rahman,et al.  Finite-Element Analysis of Optical and Microwave Waveguide Problems , 1984 .

[14]  Finite element analysis of dispersion in waveguides with sharp metal edges , 1988 .

[15]  J. Svedin,et al.  A numerically efficient finite-element formulation for the general waveguide problem without spurious modes , 1989 .

[16]  R. E. Collin,et al.  Microstrip Dispersion Including Anisotropic Substrates , 1987 .

[17]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .

[18]  E. A. J. Marcatili,et al.  Dielectric rectangular waveguide and directional coupler for integrated optics , 1969 .

[19]  Raj Mittra,et al.  A New Technique for the Analysis of the Dispersion Characteristics of Microstrip Lines , 1970 .

[21]  Masanori Matsuhara,et al.  Finite-Element Analysis of Waveguide Modes: A Novel Approach that Eliminates Spurious Modes , 1987 .

[22]  Weng Cho Chew,et al.  A variational analysis of anisotropic, inhomogeneous dielectric waveguides , 1989 .

[23]  B. M. A. Rahman,et al.  Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .

[24]  Masanori Koshiba,et al.  Improved Finite-Element Formulation in Terms of the Magnetic Field Vector for Dielectric Waveguides , 1985 .

[25]  J. B. Davies,et al.  Accurate Solution of Microstrip and Coplanar Structures for Dispersion and for Dielectric and Conductor Losses , 1979 .

[26]  Terry Young,et al.  Design of integrated optical circuits using finite elements , 1988 .

[27]  A. Konrad,et al.  High-Order Triangular Finite Elements for Electromagnetic Waves in Anisotropic Media , 1977 .

[28]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[29]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .