Context-sensitive queries for image retrieval in digital libraries

In this paper we show how to achieve a more effective Query By Example processing, by using active mechanisms of biological vision, such as saccadic eye movements and fixations. In particular, we discuss the way to generate two fixation sequences from a query image Iq and a test image It of the data set, respectively, and how to compare the two sequences in order to compute a similarity measure between the two images. Meanwhile, we show how the approach can be used to discover and represent the hidden semantic associations among images, in terms of categories, which in turn drive the query process.

[1]  Walter A. Burkhard,et al.  Some approaches to best-match file searching , 1973, Commun. ACM.

[2]  Philip S. Yu,et al.  An improved categorization of classifier's sensitivity on sample selection bias , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[3]  Simone Santini,et al.  Evaluation vademecum for visual information system , 1999, Electronic Imaging.

[4]  Ricardo A. Baeza-Yates,et al.  Searching in metric spaces , 2001, CSUR.

[5]  Jonathon S. Hare,et al.  Salient Regions for Query by Image Content , 2004, CIVR.

[6]  Alberto Del Bimbo,et al.  Semantics in Visual Information Retrieval , 1999, IEEE Multim..

[7]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[8]  Jonathon S. Hare,et al.  On Image Retrieval Using Salient Regions with Vector-Spaces and Latent Semantics , 2005, CIVR.

[9]  Chabane Djeraba,et al.  Association and Content-Based Retrieval , 2003, IEEE Trans. Knowl. Data Eng..

[10]  Alberto Del Bimbo,et al.  Visual Querying By Color Perceptive Regions , 1998, Pattern Recognit..

[11]  Joydeep Ghosh,et al.  A Unified Framework for Model-based Clustering , 2003, J. Mach. Learn. Res..

[12]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[13]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[14]  S. Edelman Constraining the neural representation of the visual world , 2002, Trends in Cognitive Sciences.

[15]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[16]  Simone Santini,et al.  Emergent Semantics through Interaction in Image Databases , 2001, IEEE Trans. Knowl. Data Eng..

[17]  Alberto Del Bimbo,et al.  Image retrieval by color semantics , 1999, Multimedia Systems.

[18]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[20]  S. Mallat A wavelet tour of signal processing , 1998 .

[21]  Nicu Sebe,et al.  Evaluation of Salient Point Techniques , 2002, CIVR.

[22]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  S. Santini Evaluation Vademecum for Visual information Systems∗ , 2000 .

[26]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[27]  Angelo Chianese,et al.  Foveated shot detection for video segmentation , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  Graham J. Williams,et al.  On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.

[29]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[30]  B. S. Manjunath,et al.  Category-based image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[31]  Jeffrey K. Uhlmann,et al.  Satisfying General Proximity/Similarity Queries with Metric Trees , 1991, Inf. Process. Lett..

[32]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[33]  Aidong Zhang,et al.  ClusterTree: Integration of Cluster Representation and Nearest-Neighbor Search for Large Data Sets with High Dimensions , 2003, IEEE Trans. Knowl. Data Eng..

[34]  Ricardo A. Baeza-Yates,et al.  Proximity Matching Using Fixed-Queries Trees , 1994, CPM.

[35]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .