The random matrix regime of Maronna's M-estimator with elliptically distributed samples
暂无分享,去创建一个
Romain Couillet | Frédéric Pascal | Jack W. Silverstein | J. W. Silverstein | R. Couillet | F. Pascal
[1] Romain Couillet. Robust spiked random matrices and a robust G-MUSIC estimator , 2015, J. Multivar. Anal..
[2] Matthew R. McKay,et al. Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators , 2014, J. Multivar. Anal..
[3] Romain Couillet,et al. Robust Estimates of Covariance Matrices in the Large Dimensional Regime , 2012, IEEE Transactions on Information Theory.
[4] R. Couillet,et al. Analysis of the limiting spectral measure of large random matrices of the separable covariance type , 2013, 1310.8094.
[5] Walid Hachem,et al. Fluctuations of Spiked Random Matrix Models and Failure Diagnosis in Sensor Networks , 2011, IEEE Transactions on Information Theory.
[6] Philippe Loubaton,et al. A subspace estimator for fixed rank perturbations of large random matrices , 2011, J. Multivar. Anal..
[7] J. Norris. Appendix: probability and measure , 1997 .
[8] H. Vincent Poor,et al. Complex Elliptically Symmetric Distributions: Survey, New Results and Applications , 2012, IEEE Transactions on Signal Processing.
[9] Cedric E. Ginestet. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .
[10] Romain Couillet,et al. Robust M-Estimation for Array Processing: A Random Matrix Approach , 2012, ArXiv.
[11] Philippe Loubaton,et al. Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case , 2010, IEEE Transactions on Information Theory.
[12] Jianfeng Yao,et al. On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..
[13] R. Couillet,et al. Random Matrix Methods for Wireless Communications , 2011 .
[14] L. Pastur,et al. Eigenvalue Distribution of Large Random Matrices , 2011 .
[15] Mérouane Debbah,et al. Eigen-Inference for Energy Estimation of Multiple Sources , 2010, IEEE Transactions on Information Theory.
[16] Pascal Bianchi,et al. Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.
[17] Mérouane Debbah,et al. A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels , 2009, IEEE Transactions on Information Theory.
[18] P. Loubaton,et al. Almost sure localization of the eigenvalues in a Gaussian information plus noise model - Application to the spiked models , 2010, 1009.5807.
[19] Boaz Nadler,et al. Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator , 2010, IEEE Transactions on Signal Processing.
[20] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[21] A. Guionnet,et al. An Introduction to Random Matrices , 2009 .
[22] Pascal Bianchi,et al. Performance analysis of some eigen-based hypothesis tests for collaborative sensing , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.
[23] Debashis Paul,et al. No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix , 2009, J. Multivar. Anal..
[24] Xavier Mestre,et al. Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.
[25] Philippe Forster,et al. Performance Analysis of Covariance Matrix Estimates in Impulsive Noise , 2008, IEEE Transactions on Signal Processing.
[26] Pascal Bianchi,et al. Cooperative spectrum sensing using random matrix theory , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.
[27] Xavier Mestre,et al. Modified Subspace Algorithms for DoA Estimation With Large Arrays , 2008, IEEE Transactions on Signal Processing.
[28] Zhidong,et al. Ju n 20 08 LIMIT THEOREMS FOR SAMPLE EIGENVALUES IN A GENERALIZED SPIKED POPULATION MODEL , 2008 .
[29] Philippe Forster,et al. Covariance Structure Maximum-Likelihood Estimates in Compound Gaussian Noise: Existence and Algorithm Analysis , 2008, IEEE Transactions on Signal Processing.
[30] Noureddine El Karoui,et al. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[31] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[32] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[33] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[34] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[35] M. Hughes,et al. Performance Analysis , 2018, Encyclopedia of Algorithms.
[36] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[37] C. Tracy,et al. On orthogonal and symplectic matrix ensembles , 1995, solv-int/9509007.
[38] Roy D. Yates,et al. A Framework for Uplink Power Control in Cellular Radio Systems , 1995, IEEE J. Sel. Areas Commun..
[39] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .
[40] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[41] David E. Tyler. A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .
[42] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[43] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[44] R. Maronna. Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .
[45] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[46] E. C. Titchmarsh,et al. The theory of functions , 1933 .