MaTED: Metadata-Assisted Twitter Event Detection System

Due to its asynchronous message-sharing and real-time capabilities, Twitter offers a valuable opportunity to detect events in a timely manner. Existing approaches for event detection have mainly focused on building a temporal profile of named entities and detecting unusually large bursts in their usage to signify an event. We extend this line of research by incorporating external knowledge bases such as DBPedia, WordNet; and exploiting specific features of Twitter for efficient event detection. We show that our system utilizing temporal, social, and Twitter-specific features yields improvement in the precision, recall, and DERate on the benchmarked Events2012 corpus compared to the state-of-the-art approaches.

[1]  Bu-Sung Lee,et al.  Event Detection in Twitter , 2011, ICWSM.

[2]  T. Murata,et al.  Breaking News Detection and Tracking in Twitter , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[3]  Boris Motik,et al.  ArmaTweet: Detecting Events by Semantic Tweet Analysis , 2017, ESWC.

[4]  Hector Garcia-Molina,et al.  Overview of multidatabase transaction management , 2005, The VLDB Journal.

[5]  Michael Gertz,et al.  EvenTweet: Online Localized Event Detection from Twitter , 2013, Proc. VLDB Endow..

[6]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[7]  Chenliang Li,et al.  Twevent: segment-based event detection from tweets , 2012, CIKM.

[8]  Joemon M. Jose,et al.  Building a large-scale corpus for evaluating event detection on twitter , 2013, CIKM.

[9]  Philip S. Yu,et al.  Parameter Free Bursty Events Detection in Text Streams , 2005, VLDB.

[10]  Cécile Favre,et al.  Mention-anomaly-based Event Detection and tracking in Twitter , 2014, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014).

[11]  Ee-Peng Lim,et al.  Analyzing feature trajectories for event detection , 2007, SIGIR.

[12]  Joemon M. Jose,et al.  Real-Time Entity-Based Event Detection for Twitter , 2015, CLEF.

[13]  Max L. Wilson,et al.  Searching Twitter: Separating the Tweet from the Chaff , 2011, ICWSM.

[14]  Sarah Vieweg,et al.  Processing Social Media Messages in Mass Emergency , 2014, ACM Comput. Surv..

[15]  Kyumin Lee,et al.  Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter , 2011, ICWSM.

[16]  Lyle Ungar,et al.  Discovery of significant emerging trends , 2010, KDD.

[17]  KhreichWael,et al.  A Survey of Techniques for Event Detection in Twitter , 2015, CI 2015.

[18]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[19]  Graham Wilcock,et al.  Text Annotation with OpenNLP and UIMA , 2009, NODALIDA.

[20]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL 2006.

[21]  Wael Khreich,et al.  A Survey of Techniques for Event Detection in Twitter , 2015, Comput. Intell..

[22]  Richard Sproat,et al.  Mining correlated bursty topic patterns from coordinated text streams , 2007, KDD '07.

[23]  Hila Becker,et al.  Beyond Trending Topics: Real-World Event Identification on Twitter , 2011, ICWSM.

[24]  Michael Grossniklaus,et al.  Editorial: Survey and Experimental Analysis of Event Detection Techniques for Twitter , 2016, Comput. J..

[25]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[26]  Sasa Petrovic,et al.  Real-time event detection in massive streams , 2013 .

[27]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[28]  Qi He,et al.  Bursty Feature Representation for Clustering Text Streams , 2007, SDM.

[29]  Dimitrios Gunopulos,et al.  Detecting Events in Online Social Networks: Definitions, Trends and Challenges , 2016, Solving Large Scale Learning Tasks.

[30]  Jon M. Kleinberg,et al.  Bursty and Hierarchical Structure in Streams , 2002, Data Mining and Knowledge Discovery.

[31]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[32]  William M. Pottenger,et al.  A Survey of Emerging Trend Detection in Textual Data Mining , 2004 .

[33]  Christian Bizer,et al.  DBpedia spotlight: shedding light on the web of documents , 2011, I-Semantics '11.

[34]  Carol A. Chapelle,et al.  The encyclopedia of applied linguistics , 2013 .

[35]  Ray A. Jarvis,et al.  Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.