Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria)

This paper deals with the inverse problem of using time-displacement monitoring data to determine the material parameters of a numerical model of a large-scale mass movement. A finite element model for simulating the mechanical behavior is presented for the Gradenbach landslide in Carinthia, Austria. Particular attention is paid to the calibration of the constitutive relationships, which represent a prerequisite for a realistic quantitative analysis. After a short introduction to the concept of model-parameter identification, this paper demonstrates how to apply the proposed model identification strategy to determine model parameters for the Gradenbach example. The impact of the amount of reference data available for the inverse model-parameter analysis is evaluated by means of artificial reference data. Subsequently, the numerical model is calibrated using field measurement data. The results obtained are presented, and the benefits and drawbacks of the proposed concept are evaluated.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Xia-Ting Feng,et al.  Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm , 2006 .

[3]  Jan Zeman,et al.  Applying genetic algorithms to selected topics commonly encountered in engineering practice , 2000 .

[4]  Marc Boulon,et al.  Inverse analysis of soil parameters for Finite Element simulation of geotechnical structures: Pressuremeter test and excavation problem , 2004 .

[5]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[6]  B. Manly Multivariate Statistical Methods : A Primer , 1986 .

[7]  Ta-Hsin Li,et al.  Maximum Likelihood Approach , 2013 .

[8]  Giovanni B. Crosta,et al.  Large landslides: Dating, triggering, modelling, and hazard assessment , 2006 .

[9]  A. Gens,et al.  PARAMETER AND VARIANCE ESTIMATION IN GEOTECHNICAL BACKANALYSIS USING PRIOR INFORMATION , 1996 .

[10]  G. N. Pande Numerical Models in Geomechanics - NUMOG X , 2007 .

[11]  O. Zienkiewicz,et al.  Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses , 1977 .

[12]  Steffen Schön,et al.  Affine distortion of small GPS networks with large height differences , 2007 .

[13]  Y. M. Cheng,et al.  Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods , 2007 .

[14]  G. Gioda,et al.  Finite Element Analysis of a Deep-seated Slope Deformation , 2001 .

[15]  D. V. Griffiths,et al.  Three-dimensional slope stability analysis by elasto-plastic finite elements , 2007 .

[16]  R. Lewis,et al.  Associated and non-associated visco-plasticity and plasticity in soil mechanics , 1975 .

[17]  Richard J. Finno,et al.  Selecting parameters to optimize in model calibration by inverse analysis , 2004 .

[18]  D. H. Radbruch-Hall Gravitational Creep of Rock Masses on Slopes , 1978 .

[19]  Jingyu Shi,et al.  A double slip non-coaxial flow rule for viscous-plastic Cosserat materials , 2011 .

[20]  Doug Stead,et al.  Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide , 2004 .

[21]  Eduardo Alonso,et al.  Estimation of Parameters in Geotechnical Backanalysis - II. Application to a Tunnel Excavation Problem , 1996 .

[22]  Maurice Clerc Binary Particle Swarm Optimisers: toolbox, derivations, and mathematical insights , 2005 .

[23]  Leslie George Tham,et al.  Three-dimensional stability evaluation of a preexisting landslide with multiple sliding directions by the strength-reduction technique , 2007 .

[24]  X. Li,et al.  Finite element analysis of slope stability using a nonlinear failure criterion , 2007 .

[25]  F. Noverraz,et al.  Sagging or Deep Seated Creep : Fiction or Reality ? , 1996 .

[26]  J. Durville,et al.  Méthodes de surveillance d'un glissement de terrain de très grande ampleur: La Clapière, Alpes Maritimes, France , 1987 .

[27]  Lyesse Laloui,et al.  Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity , 2005 .

[28]  E. C. Kalkani,et al.  Finite Element Analysis of Toppling Failure at Hell's Gate Bluffs, British Columbia , 1976 .

[29]  Alessandro Corsini,et al.  Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling , 2008 .

[30]  Richard J. Finno,et al.  Calibration of soil models by inverse analysis , 2002 .

[31]  Ewald Brückl,et al.  Geophysical models of the Lesachriegel and Gradenbach deep-seated mass-movements (Schober range, Austria) , 2006 .

[32]  Antonio Gens,et al.  Estimation of parameters in geotechnical backanalysis — I. Maximum likelihood approach , 1996 .

[33]  Ronaldo I. Borja,et al.  Multiphysics hillslope processes triggering landslides , 2012 .

[34]  K. Kraus,et al.  Kinematics of a deep‐seated landslide derived from photogrammetric, GPS and geophysical data , 2006 .

[35]  Stefan Finsterle Demonstration of optimization techniques for groundwater plume remediation , 2000 .

[36]  Daichao Sheng,et al.  Genetic algorithms in probabilistic finite element analysis of geotechnical problems , 2005 .

[37]  C. F. Lee,et al.  Displacement back analysis for a steep slope at the Three Gorges Project site , 2001 .

[38]  Ashok K. Chugh,et al.  On the boundary conditions in slope stability analysis , 2003 .

[39]  E. Eberhardt,et al.  Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia , 2007 .

[40]  Tom Schanz,et al.  Identification of Constitutive and Geometrical Parame- ters for Slope Instability Modelling - Application to Mountain-Splitting Area Reutte/Tyrol (Austria)_________ , 2009 .

[41]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.