Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures

We report on various results, conjectures, and open problems related to Kazhdan-Lusztig polynomials of matroids. We focus on conjectures about the roots of these polynomials, all of which appear here for the first time.

[1]  Katie R. Gedeon Kazhdan-Lusztig Polynomials of Thagomizer Matroids , 2016, Electron. J. Comb..

[2]  Philip B. Zhang THE LOCAL $h$ -POLYNOMIALS OF CLUSTER SUBDIVISIONS HAVE ONLY REAL ZEROS , 2016, Bulletin of the Australian Mathematical Society.

[3]  Philip B. Zhang Multiplier Sequences and Real-rootedness of Local $h$-polynomials of Cluster Subdivisions , 2016 .

[4]  Benjamin Young,et al.  The equivariant Kazhdan-Lusztig polynomial of a matroid , 2016, J. Comb. Theory, Ser. A.

[5]  Max Wakefield Partial flag incidence algebras , 2016, 1605.01685.

[6]  Karim A. Adiprasito,et al.  Hodge theory for combinatorial geometries , 2015, Annals of Mathematics.

[7]  Max Wakefield,et al.  Intersection cohomology of the symmetric reciprocal plane , 2015, 1504.07348.

[8]  Ben Elias,et al.  The Kazhdan-Lusztig polynomial of a matroid , 2014, 1412.7408.

[9]  Steven V. Sam,et al.  Gröbner methods for representations of combinatorial categories , 2014, 1409.1670.

[10]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.

[11]  Thomas Church,et al.  Representation theory and homological stability , 2010, 1008.1368.

[12]  Francesco Brenti P-kernels, IC bases and Kazhdan–Lusztig polynomials , 2003 .

[13]  P. Polo Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups , 1999 .

[14]  Richard P. Stanley,et al.  Subdivisions and local $h$-vectors , 1992 .

[15]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .