A characterization theorem and an algorithm for a convex hull problem

Given $$S= \{v_1, \dots , v_n\} \subset {\mathbb {R}}^m$$S={v1,⋯,vn}⊂Rm and $$p \in {\mathbb {R}}^m$$p∈Rm, testing if $$p \in conv(S)$$p∈conv(S), the convex hull of $$S$$S, is a fundamental problem in computational geometry and linear programming. First, we prove a Euclidean distance duality, distinct from classical separation theorems such as Farkas Lemma: $$p$$p lies in $$conv(S)$$conv(S) if and only if for each $$p' \in conv(S)$$p′∈conv(S) there exists a pivot, $$v_j \in S$$vj∈S satisfying $$d(p',v_j) \ge d(p,v_j)$$d(p′,vj)≥d(p,vj). Equivalently, $$p \not \in conv(S)$$p∉conv(S) if and only if there exists a witness, $$p' \in conv(S)$$p′∈conv(S) whose Voronoi cell relative to $$p$$p contains $$S$$S. A witness separates $$p$$p from $$conv(S)$$conv(S) and approximate $$d(p, conv(S))$$d(p,conv(S)) to within a factor of two. Next, we describe the Triangle Algorithm: given $$\epsilon \in (0,1)$$ϵ∈(0,1), an iterate, $$p' \in conv(S)$$p′∈conv(S), and $$v \in S$$v∈S, if $$d(p, p') < \epsilon d(p,v)$$d(p,p′)<ϵd(p,v), it stops. Otherwise, if there exists a pivot $$v_j$$vj, it replace $$v$$v with $$v_j$$vj and $$p'$$p′ with the projection of $$p$$p onto the line $$p'v_j$$p′vj. Repeating this process, the algorithm terminates in $$O(mn \min \{ \epsilon ^{-2}, c^{-1}\ln \epsilon ^{-1} \})$$O(mnmin{ϵ-2,c-1lnϵ-1}) arithmetic operations, where $$c$$c is the visibility factor, a constant satisfying $$c \ge \epsilon ^2$$c≥ϵ2 and $$\sin (\angle pp'v_j) \le 1/\sqrt{1+c}$$sin(∠pp′vj)≤1/1+c, over all iterates $$p'$$p′. In particular, the geometry of the input data may result in efficient complexities such as $$O(mn \root t \of {\epsilon ^{-2}} \ln \epsilon ^{-1})$$O(mnϵ-2tlnϵ-1), $$t$$t a natural number, or even $$O(mn \ln \epsilon ^{-1})$$O(mnlnϵ-1). Additionally, (i) we prove a strict distance duality and a related minimax theorem, resulting in more effective pivots; (ii) describe $$O(mn \ln \epsilon ^{-1})$$O(mnlnϵ-1)-time algorithms that may compute a witness or a good approximate solution; (iii) prove generalized distance duality and describe a corresponding generalized Triangle Algorithm; (iv) prove a sensitivity theorem to analyze the complexity of solving LP feasibility via the Triangle Algorithm. The Triangle Algorithm is practical and competitive with the simplex method, sparse greedy approximation and first-order methods. Finally, we discuss future work on applications and generalizations.

[1]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[2]  Kenneth L. Clarkson,et al.  Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.

[3]  Guanghui Lan,et al.  Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .

[4]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[5]  Bahman Kalantari,et al.  On Properties of Forbidden Zones of Polygons and Polytopes , 2012, ISVD.

[6]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[7]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .

[8]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[9]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[10]  B. Kalantari Semidefinite programming and matrix scaling over the semidefinite cone , 2003 .

[11]  Martin E. Dyer,et al.  A randomized algorithm for fixed-dimensional linear programming , 1989, Math. Program..

[12]  Leonid Khachiyan,et al.  Diagonal Matrix Scaling and Linear Programming , 1992, SIAM J. Optim..

[13]  Bahman Kalantari,et al.  Mollified Zone Diagrams and Their Computation , 2011, Trans. Comput. Sci..

[14]  Daniel A. Spielman,et al.  A randomized polynomial-time simplex algorithm for linear programming , 2006, STOC '06.

[15]  Renato D. C. Monteiro,et al.  Primal-dual first-order methods with $${\mathcal {O}(1/\epsilon)}$$ iteration-complexity for cone programming , 2011, Math. Program..

[16]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[17]  R. Freund,et al.  Condition number complexity of an elementary algorithm for resolving a conic linear system , 1997 .

[18]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[19]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[20]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[21]  Kenneth L. Clarkson,et al.  More output-sensitive geometric algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Tong Zhang,et al.  Sequential greedy approximation for certain convex optimization problems , 2003, IEEE Trans. Inf. Theory.

[23]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[24]  Bahman Kalantari,et al.  Solving Linear System of Equations Via A Convex Hull Algorithm , 2012, ArXiv.

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[27]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[28]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[29]  Bahman Kalantari,et al.  Maximal Zone Diagrams and their Computation , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[30]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[31]  M. R. Emamy-K,et al.  On linear programming and matrix scaling over the algebraic numbers , 1997 .

[32]  C. Michelot,et al.  Sets of efficient points in a normed space , 1986 .

[33]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[34]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[35]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[36]  Dan Roth,et al.  Algorithms and Analysis for Multi-Category Classification , 2006 .

[37]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[38]  Bahman Kalantari Finding a Lost Treasure in Convex Hull of Points From Known Distances , 2012, CCCG.

[39]  Dan Roth,et al.  Maximum Margin Coresets for Active and Noise Tolerant Learning , 2007, IJCAI.

[40]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[41]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[42]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1995, SCG '95.

[43]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[44]  Martin Jaggi,et al.  Coresets for polytope distance , 2009, SCG '09.

[45]  E. Gilbert An Iterative Procedure for Computing the Minimum of a Quadratic Form on a Convex Set , 1966 .

[46]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[47]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[48]  Jirí Matousek,et al.  Zone diagrams: existence, uniqueness and algorithmic challenge , 2007, SODA '07.

[49]  Bahman Kalantari,et al.  A procedure of Chvátal for testing feasibility in linear programming and matrix scaling , 2006 .