Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation

We present a systematic approach to the computation of exact nonreflecting boundary conditions for the wave equation. In both two and three dimensions, the critical step in our analysis involves convolution with the inverse Laplace transform of the logarithmic derivative of a Hankel function. The main technical result in this paper is that the logarithmic derivative of the Hankel function $H_\nu^{(1)}(z)$ of real order $\nu$ can be approximated in the upper half $z$-plane with relative error $\varepsilon$ by a rational function of degree $d \sim O (\log|\nu|\log\frac{1}{\varepsilon}+ \log^2 |\nu| + | \nu |^{-1} \log^2\frac{1}{\varepsilon} )$ as $|\nu|\rightarrow\infty$, $\varepsilon\rightarrow 0$, with slightly more complicated bounds for $\nu=0$. If N is the number of points used in the discretization of a cylindrical (circular) boundary in two dimensions, then, assuming that $\varepsilon < 1/N$, $O(N \log N\log\frac{1}{\varepsilon})$ work is required at each time step. This is comparable to the work required for the Fourier transform on the boundary. In three dimensions, the cost is proportional to $N^2 \log^2 N + N^2 \log N\log\frac{1}{\varepsilon}$ for a spherical boundary with N2 points, the first term coming from the calculation of a spherical harmonic transform at each time step. In short, nonreflecting boundary conditions can be imposed to any desired accuracy, at a cost dominated by the interior grid work, which scales like N3 in two dimensions and N2 in three dimensions.

[1]  Javier Sesma,et al.  Modulus and phase of the reduced logarithmic derivative of the Hankel function , 1983 .

[2]  L. Ting,et al.  Exact boundary conditions for scattering problems , 1986 .

[3]  L. Trefethen,et al.  Real and complex Chebyshev approximation on the unit disk and interval , 1983 .

[4]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[5]  F. W. J. Olver,et al.  The asymptotic expansion of bessel functions of large order , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[7]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Time-Dependent Scattering , 1996 .

[8]  Leslie Greengard,et al.  Accurate boundary treatments for Maxwell's equations and their computational complexity , 1998 .

[9]  Jr. Harold Page Starr On the numerical solution of one-dimensional integral and differential equations , 1992 .

[10]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[11]  F. Olver Asymptotics and Special Functions , 1974 .

[12]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[13]  Ivan Sofronov,et al.  Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems , 1998, European Journal of Applied Mathematics.

[14]  L. Trefethen Rational Chebyshev approximation on the unit disk , 1980 .

[15]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[16]  D. Givoli Non-reflecting boundary conditions , 1991 .

[17]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[18]  Thomas Hagstrom,et al.  On High-Order Radiation Boundary Conditions , 1997 .

[19]  J. Nédelec,et al.  Quleques propriétés des dérivées logarithmiques des fonctions de Hankel , 1992 .

[20]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[21]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[22]  K. Miyahara,et al.  Hyperbolic boundary value problems , 1982 .

[23]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[24]  Thomas Hagstrom,et al.  On the accurate long-time solution of the wave equation in exterior domains: asymptotic expansions and corrected boundary conditions , 1994 .

[25]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[26]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[27]  Martin H. Gutknecht,et al.  Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval , 1984 .

[28]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[29]  F. W. J. Olver,et al.  The asymptotic solution of linear differential equations of the second order for large values of a parameter , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.